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- S W Y  IN OPI'IMIZELTION OF MICROCIRCUIT DESIGN 

1. ImomcTION 

The last  three years has seen an extremely rapid growth i n  the technology 

and appl icat ion of microcircuits. 

a heavy investment on the part of both mil i tary and c iv i l i an  agencies i n  th i s  

Much of t h i s  growth i s  the d i r ec t  r e su l t  of 

area. While i n i t i a l  e f f o r t s  were based on the hope of obtaining reduced weight 

and power requirements, much of the present em2hasis on microcircuits is  based 

on the desire  t o  provide e l e c t r i c a l  functions more r e l i ab ly  than a re  obtained 

by their  hand-wired mcroscale  counterparts. A s  such, many studies have 

already been made i n  the area of system design and organization w i t h  a view 

towards achieving t h i s  goal. Simultaneously, considerable work has been 

undertaken t o  study the basic  physics of failure, and t o  obtain an under- 

standing of the  fundamental mechanisms tha t  a f f ec t  r e l i a b i l i t y .  

I n  addition t o  the above studies, the development of microcircuits has 

taken place i n  a rapidly changing technological environment. Most of these 

technological developaents have grea t ly  increased the performance of micro- 

c i r cu i t s ,  while simultaneously reducing t h e i r  cost. 

This program i s  aimed a t  investigating problems pertaining t o  aspects of 

device technology, c i r c u i t  design, and logical  design which d i r ec t ly  influence 

the r e l i ab le  operation of a microcircuit subsystem. 

of necessity, in te rd isc ip l inary  i n  nature. 

A program of th i s  s o r t  is, 

I n  contrast  t o  the use-of  personnel 

whose spec ia l ty  i n t e r e s t s  a r e  i n  these areas, we have attempted t o  p u l l  together 

a t  Rensselaer an organization i n  which each member has a broad range of in t e re s t  

i n  a11 these areas. - 
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Three tasks  have been selected for  th i s  e f for t .  The spec i f ic  aims of these 

tasks a re  as follows. 

a) To invest igate  the use of Nickel as a subs t i tu te  f o r  Gold i n  the fabri -  

cation of high speed microcircuits. 

To investigate the noise immunity of high speed saturated logic  micro- 

c i r c u i t  s. 

c) To investigate osc i l l a t ion  hazards i n  asynchronous sequential  c i rcui ts .  

These problems cover, respectively, important aspects of device technology, 

c i r c u i t  design, and log ica l  design which bear d i rec t ly  on the r e l i ab le  operation 

of high speed microcircuit subsystems. 

b) 

I n  th i s  report, a br ie f  out l ine of each program i s  f irst  presented, w i t h  a 

summary of the work accomplished. Details of t h i s  work a re  referred t o  a se r ies  

of Appendixes which follow. Suggestions f o r  fur ther  work along these l i nes  a r e  

a l so  made. 

2. SUITABLE ALmuTIms To GOLD IN SILICON 

2.1 The Problem - 
A t  the present time, gold is  used extensively i n  the fabricat ion of s i l i con  

devices requiring low minority c a r r i e r  l ifetime. Usually, gold diffusion i s  the 

f i n a l  process i n  fabrication, p r io r  t o  metall ization and encapsulation. The 

introduction of gold r e su l t s  i n  a number of problems: 

a )  

magnitude greater  than that of the usual semiconductor dopants (Boron and Phos- 

phorus). 

must be s tored a t  300 C or higher. 

Gold has an extremely high diffusion constant, about f ive  t o  s i x  orders of 

Thus, the gold atoms cannot be considered immobile i n  devices which 

0 
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b )  Gold i s  a noble m e t a l .  Diffusion can only occur out of the elemental metal, 

since a l l  presently known gold s a l t s  dissociate a t  typ ica l  diffusion temperatures 

(11oo0 c - 1200O c). 

e )  Gold forms a eu tec t ic  with s i l i con  a t  375' C. Thus, the diffusion proceeds 

from a gold-sil icon alloy, resu l t ing  i n  damage of the surface t o  a depth of many 

microns. 

doped. I n  this case, gold i s  applied t o  the s ide  of the wafer t h a t  const i tutes  

This i s  of no consequence when the en t i r e  microcircuit must be gold 

the  substrate ,  and the damaged layer  i s  mechanically removed pr ior  t o  encapsulation. 

I n  some important microcircuit applications, select ive l i fe t ime reduction i s  

necessary f o r  optimum performance (an example of a c i r c u i t  of th i s  type i s  the 

diode-transistor log ic  gate.) Here, it i s  necessary t o  use the ac tua l  side of the 

wafer on which the microcircuit i s  fabricated. Since modern microcircuit devices 

a r e  fabr icated within the f irst  f e w  microns of semiconductor material, the use 

of gold i s  not feas ib le  i n  t h i s  instance. 

d )  Gold i s  metal lurgical ly  incompatible w i t h  al&num, which i s  ord inar i ly  used 

f o r  making contacts t o  the devices i n  the microcircuit. A t  elevated temperature, 

gold i n  the  presence of aluminum and s i l icon  gives r i s e  t o  the well-known "purple 

plague", which i s  a serious mechanism f o r  semiconductor f a i lu re ,  

2.2 - The Approach 

There a r e  a number of materials that  a re  potent ia l ly  useful f o r  reducing 

l i fe t ime i n  s i l icon.  

cobalt, and copper) a re  su i tab le  candidates f o r  t h i s  application. 

Thus, almost a l l  of the t r ans i t i on  elements (iron, nickel, 

I n  general, a l l  

these elements exhibit  one o r  more deep lying impurity leve ls  i n  s i l icon,  and 

provide recombination centers f o r  minority carr iers .  These elements provide the 

s t a r t i n g  point f o r  a search f o r  a subst i tute  f o r  gold, Ideally, such a subs t i tu te  



would have a lower diffusion constant than that f o r  gold i n  s i l icon,  the a b i l i t y  

t o  be diffused from a glass-l ike source which does not damage the surface of the 

s i l i con ,  a sui table  capture cross-section so a s  t o  provide suf f ic len t  reduction 

i n  the l i fe t ime of minority carr iers ,  and metallurgical compatibility w i t h  the 

material  used f o r  making e l e c t r i c a l  contacts. 

For the purpose of t h i s  program, nickel was selected a s  a candidate f o r  

study. 

i n  existence a body of knowledge concerning some of i t s  properties i n  s i l icon.  

I n  addition, we have considerable past experience a t  Rensselaer on the u t i l i z a t i o n  

The choice of this material was based 3n the f a c t  t h a t  there i s  already 

of nickel  i n  microwave devices*. 

2.3 Program Effor t  

2.3.1 Literature  Study 

The program was i n i t i a t e d  with a short  survey of the ex is t ing  l i t e r a t u r e  on 

nickel  i n  s i l icon.  me findings of t h i s  survey a re  as follows: 

a )  

i s  seen= t o  be retrograde i n  character, peaking a t  5 x 1017 atoms per cc. a t  

1260° C. 

Using radioactive t r a c e r  analysis,  the so l id  so lub i l i t y  of nickel i n  s i l i con  

Figure 1 shows t h i s  so l id  so lub i l i t y  character is t ic .  It should be 

emphasized that t h i s  curve indicates the  t o t a l  nickel content that can be present 

i n  s i l icon.  I n  addition t o  e lectronical ly  act ive nickel, t h i s  includes inactive 

nickel  i n  i t s  various forms (oxides, s i l i c ides ,  p rec ip i ta tes  and i n t e r s t i t i a l s ) .  

b )  

indicat ing s o l i d  solut ion of nickel  i n  s i l i con  is  not s h m  i n  t h i s  diagram. 

The formation of N i s i 2  by a pe r i t ec t i c  reaction i s  of importance, and is  seen 

t o  take place a t  temperatures above 993' C. This compound (48.90 wt % of S i )  

Figure 2 shows the  phase diagram f o r  the nickel-sil icon system. The phase 

* Ghandhi, S. K. e t  a l ,  "Impact Ionization Devices", Trans. IEEE Group on Electron 
Devices, ED-13, no. 6, p. 515-519, 1966. ' * Yoshida, M. and Furusho, K., "Behavior of Nickel a s  an Impurity i n  Silicon", 
Japan J. Appl. Phys., v. 3, no. 9, p. 521-529 (1964). 

I 
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i s  formed on the surface of the wafers during our experiments, and it is  expected 

that it i s  a l so  present within the wafer t o  some extent. 

c )  

both subs t i tu t iona l  and i n t e r s t i t i a l  s i tes .  I n  addition, compound formation i s  

present i n  increasingly la rge  amounts a t  diffusion temperatures above 1000 

Nickel diffuses  i n t e r s t i t i a l l y  into the s i l i con  l a t t i c e ,  and freezes in to  

0 C. 

Consequently, we may expect only a f r ac t ion  of the nickel  t o  be electronical ly  

ac t ive  i n  s i l icon.  

been estimated* t o  be on the order of loe4 t o  

d) Hall measurements and concentration 

temperature dependence measurements have established two acceptor s t a t e s ,  a t  

0.35- 0.03 eV. below conduction band and 0.23- 0.03 eV. above the valence band. 

Over the range l i O O o  t o  1200° C, the diffusion constant has 
2 cm /sec. 

Nickel i s  weakly pty-pe i n  s i l icon.  

+ + 

These a re  both deep lying 

recombination of minority 

amphoteric i n  nature, and 

s ta tes ,  and can serve as centers about which the 

ca r r i e r s  can take place. I n  contrast, gold is  

provides one donor and one acceptor s t a t e  i n  s i l icon.  

2.3.2 Compensation Effects  

A study has been made of the compensation e f f ec t s  of nickel i n  s i l icon.  

The aim of t h i s  study ( theore t ica l  a s  well a s  experimental) was t o  determine the 

percentage of e lec t ronica l ly  act ive nickel i n  s i l icon.  

possible t o  predict  such device properties a s  pa ras i t i c  s e r i e s  resistence when 

nickel  is  used f o r  l i fe t ime degredation i n  semiconductor devices. 

I n  t h i s  manner, it i s  

A theo re t i ca l  analysis was made of the compensation e f f e c t s  of nickel  i n  n- 

type s i l icon.  This analysis considered the s t a t i s t i c s  of mdltiple-charge s ta tes ,  

I * Alberts, J. H., and Verheyhe, M. L., Appl. Phys. Letters, v. I, p. 19-20 (1962). 



- 6 -  

and resu l ted  i n  the development of a design curve r e l a t ing  the majority ca r r i e r  

concentration both before and a f t e r  nickel doping, as  a f w c t i o n  of nickel con- 

centration. With the a id  

of th i s  curve, it is possible t o  determine the s h i f t  i n  the Fermi level,  and 

a l so  the degree of r e s i s t i v i t y  change when nickel  i s  added t o  n-type s i l icon.  

By corre la t ing  with ac tua l  r e s i s t i v i t y  changes determined by experiment, it i s  

possible t o  use this analysis  t o  determine the amount of nickel that i s  electron- 

i c a l l y  ac t ive  a t  various diffusion temperatures, 

Details of t h i s  analysis are outlined i n  Appendix A. 

Experiments were conducted t o  determine the compensation e f fec ts  of nickel 

i n  s i l i con .  A number of s l i c e s  of n-silicon, ranging i n  r e s i s t i v i t y  f m n  0.1 

ohm-cm t o  2.5 ohm-cm were used. i n  the experimental study. 

considered t o  be the useful range of r e s i s t i v i t i e s  f o r  the fabricat ion of semi- 

conductor diodes and t rans is tors .  

used i n  a f e w  of the  experiments, 

This is generally 

Res is t iv i t ies  as  high a s  6.0 ohm-cm were 

These s l i c e s  were first lapped t o  1000 grit and etched, and spec i f ic  res i s -  

t i v i t y  measurements made with a four-point probe. 

with nickel. Many experiments i n  the gold doping o f  silicon have s t ressed the 

necessi ty  of complete removal of Si0 pr ior  t o  the coating step, i f  uniform 

diffusion i s  desired. To t h i s  end, Wilcox* and co-workers have noted (with 

gold) that e lec t ro less  p la t ing  methods are superior t o  vacuum deposition, i f  the 

e lec t ro less  deposition s t e p  i s  carr ied out i n  a oxide-dissolving solution. Con- 

sequently, a highly basic  e lec t ro less  nickel bath was used i n  our experiments. 

Next, the wafers were coated 

2 

It is worth noting a t  t h i s  point that  the use of a plated diffusion source 

These contaminants often leads t o  =many contaminants entering the host l a t t i c e .  +--- 
*Wilcox, W, R., e t  a l ,  Jour. Electrochem. SO~., v. ll1, no. 12, p. 1377-1380, 1964. - 
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two classes -- the highly soluble s--allow impurities (such a s  phosphorous 

and aluminum) and the  re la t ive ly  insoluble deep lying impurities (such as cobalt, 

manganese, iron, and copper). 

constants of nickel and the shallow lying impurities shows that a lapping step, 

a f t e r  diffusion, i s  effect ive i n  eliminating any t race  of the l a t t e r  slow diffusion 

impurities. I n  addition, a comparison of the so l id  so lub i l i t y  of nickel w i t h  t h a t  

of o ther  deep ly ing  impurities shows that, even i n  the presence of the l a t t e r ,  the 

former i s  predominant. 

unwanted contaminants was seen i n  infrared transmission runs (performed on another 

program a t  Rensselaer) of samples doped i n  t h i s  manner, which were singularly f r ee  

f r o m  spurious absorptions. 

A comparison of the widely differ ing diffusion 

A f i n a l  check on the freedom from detectable amounts of 

0 Diffusion runs were wide a t  temperatures ranging from 900 C t o  1250' C. In 

each case, the diffusion time f o r  nickel w a s  computed on the basis of the known 

diffusion constant f o r  gold (a good guess, a t  best!) and a generous safety f ac to r  

used t o  ensure uniform doping. 

doping l eve l  of the samples was considered t o  be that s e t  by the so l id  so lub i l i t y  

l i m i t  f o r  t h a t  temperature. 

After diffusion, the samples were rapidly quenched i n  air ,  and cleaned and 

Since in f in i t e  sokrce diffusion was used, the 

etched t o  remove a l l  surface contamination. 

v i t y  was again measured by the  four-point probe. 

A t  t h i s  point, the specif ic  r e s i s t i -  

Since the four-point probe technique leaves considerable margin f o r  error ,  

addi t ional  measurements were taken by a n  a l t e rna te  technique, as follows: 

Individual wafers of d i f fe r ing  r e s i s t i v i t y  were selected. These wafers were 

The first quarter from each wafer was plated w i t h  N+ contacts, sintered, 

Measurements were made of the physical dimensions and resistance of 

F r o m  th is  data, 

quartered. 

and diced. 

individual dice a f t e r  ensuring that the contacts were "ohmic". 
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r e s i s t i v i t y  values were obtained, and an average taken. I n  each case, a 

correction was made f o r  the f a c t  that the e f fec t ive  thickness of the wafer was 

reduced because of the lapped nature of i t s  surface (pr ior  t o  the application 

of N+ contacts).  

The experiment was repeated on the other  quarters, a f t e r  nickel  diffusion 

a t  temperatures ranging from 900' C to  ll5Oo C. 

before and after nickel  diffusion a re  shown i n  Figure 3 .  

950° C nickel  diffusions showed essent ia l ly  no detectable increase i n  r e s i s t i v i ty .  

Using the  data f r o m  the 1000° C diffusion curve, it i s  seen that the r e s i s t i v i t y  

i s  increased from 6.75 ohm-cm t o  10 ohm-cm due t o  nickel diffusion a t  1000° C. 

The curves f o r  r e s i s t i v i t y  

Data on the 900' and 

With the a i d  of Appendix A, we calculate an act ive nickel concentration of 

1.035 x 1014 atozs/cc f o r  this case, of which 7% is  singly ionized and 93s doubly 

ionized. 

about 0.105 of the nickel  i s  i n  active s i t e s  f o r  this diffusion temperature. 

With the a i d  of the solid so lubi l i ty  curve, t h i s  would indicate t h a t  

The f r ac t ion  of act ive nickel i n  s i l i con  is seen t o  f a l l  off a t  higher 

temperatures. This would appear reasonable, because of the increased formation 

of compounds a t  higher temperatures. 

noted f r o m  sample t o  sample. 

material  a f t e r  diffusion was ac tua l ly  found t o  be l e s s  than t h a t  before 

By 1150' C, highly variable r e s u l t s  were 

I n  fac t ,  a t  1250° Cy the r e s i s t i v i t y  of the 

diffusion! No attempts were made t o  explain these diffusion anomalies. It 

was decided t h a t  fu r the r  experiments would be confined t o  the temperature 

range of 1150° C and larer. 



2.3.3 5 

- 9 -  

ritg Carrier Lifetime 

Experiments were conducted t o  determine the e f f ec t  of nickel doping on 

I n i t i a l l y  it was planned t o  conduct these the minority ca r r i e r  l ifetime. 

experiments with wafers of 0.25, 0.5, 1.0 and 2.5 ohm-cm r e s i s t i v i t i e s .  

However, time d id  not permit such a complete study t o  be undertaken, and 

the l i fe t ime experiments were confined t o  the use of 0.5 ohm-cm wafers. 

It was P e l t  that  t h i s  was not an undue res t r ic t ion ,  since there  i s  no 

reason t o  believe.that e f f ec t s  w i l l  be s ign i f icant ly  d i f fe ren t  f o r  other  

r e s i s t i v i t i e s .  

Minority ca r r i e r  l i fe t ime was measured by the recovery time method. 

I n  this  method, p n  diodes are  fabricated and t h e i r  recovery time corre- 

l a t ed  t o  the  minority ca r r i e r  l i fe t ime by the technique outlined i n  

Appendix B. This approach was used because ( f o r  our range of l i fe t ime 

values) it i s  eas i e r  t o  instrument than the photo-conductive decay method. 

I n  addition, the method has self-checking features  on i ts  accuracy, as 

described i n  Appendix B. 

Devices were fabricated i n  the following manner: 

a )  Wafers of 0 . 5 ~  ern r e s i s t i v i t y  were cleaned and lapped with 1000 g r i t .  

One s ide  of the wafers was wax masked and the wafers etched t o  remove surface 

damage. 

of about 10 CL per minute was used. 

b )  

a closed box technique being used for  t h i s  step. 

A r e l a t ive ly  slow etch (HF-HIYO CH COOH system) with an etch r a t e  3- 3 

0 The wafers were now pre-deposited w i t h  B203 f o r  10 minutes a t  1175 C, 
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c )  Drive-in was conducted a t  1175' C f o r  varying periods of 

case, t h i s  comprised a half hour period i n  pure oxygen, w i t h  

period i n  a 97% N2, 3% O2 gas mixture. 

time. In  each 

the r e s t  of the 

I n i t i a l l y ,  wafers were diffused t o  a junction depth of 10 p. I n  l a t e r  

experiments, however, the diffusion depth was reduced t o  under 5 1-1. This 

had the advantage of considerably reducing diffusion time, and thus reducing 

t h e  poss ib i l i t y  of contamination during the  diffusion run. 

d) 

glass,  and the reverse s ide was lapped and nickel-plated. Each wafer was 

quartered; the nickel was s t r ipped of f  one of these quarters, while the 

o ther  three were diffused a t  different  diffusion temperatures. 

the experiments, diffusion temperatures were nominally U5O0 C, 1100 

1050° C while i n  ye t  others, diffusion temperatures of goo0 C, 950' C and 

1000° C were used. 

covered. 

Experimental data showed t h a t  the diffusion time was r e l a t ive ly  unimportant 

i n  a l l  cases a s  long a s  it was i n  excess of half an hour. I n  some of our 

ea r ly  experiments, nickel diffusion was done while the boro-si l icate  glass 

was s t i l l  remaining on one s ide of the wafer. This w a s  found t o  give 

extremely variable resu l t s ,  especial ly  f o r  high diffusion temperatures. 

Often, there  was noted a strong get ter ing effect* a t  these temperatures, 

( lOOOo C upwards) and the  procedure was discontinued. All the t e s t  data 

on minority ca r r i e r  l i fe t ime was thus taken on wafers which were nickel 

diffused from one side, and f r ee  from boro-si l icate  glass on the other. 

After  drive-in, the wafers were washed i n  HF t o  remove the boro-si l icate  

I n  some of 

0 C and 

I n  t h i s  manner, the range from 900' C t o  1150' C was  

Adequate time was allowed f o r  the diffusions i n  each case. 

* Ing, S. W., e t  a l ,  - Jour. Electmchem e., v. 110, no. 6, p. 533-537, 1963. 8 
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This ensued  the absence of compting mechanisms cf nickcl diffusion and 

nickel  gettering, and lead t o  consistent experimental resul ts .  

e )  

the  nickel-sil icon interface region. 

the boron diffusion was conductedj was  vacuum coated with aluminum. 

metall ized wafers w e r e  diced and sintered, and individual dice used t o  make 

devices. 

f )  

germanium eutec t ic  preforms. Considerable trouble was experienced w i t h  t h i s  

fabr ica t ion  step. The problem w a s  ultimately traced t o  the f a c t  t h a t  OUT 

die-bonder (home-made) had no p-ovisions f o r  scrubbing the die on the header 

t o  f a c i l i t a t e  the removal of surface oxides. The problem was eliminated by 

using the following subroutine: 

Af te r  diffusion, the wafers were a i r  quenched, aid back-lapped t o  remove 

The upper face of the wafer ( i n  which 

The 

The individual dice were bonded t o  TO-5 headers using 0.25% 5%-doped gold- 

After s inter ing,  the individual dice were bedded, aluminum face dam, 

These dice were la=ped f o r  about 8 zinute on a l a p  block coated wi th  wax. 

i n  1000 g r i t ,  and the f resh ly  lapped dice s tored i n  trichloroethylene (TCE) 

p r io r  t o  their  use. I n  addition, the headers were boiled i n  TCE f o r  f ive  

minutes pr ior  t o  the bonding operation. This series of steps resulted i n  

a consistently successful bonding operation. 

g) 

wafer. 

were encountered here, once operator s k i l l  was developed. The other  end of 

the bonding w i r e  was spot welded t o  the post i n  the TO-5 header. 

h) 

gold w i r e ,  t h i s  served a s  a mask, while the CP4 etched away the exposed 

A n a i l  head bonder was used t o  make the thermo-compression bond t o  the 

Three-mil gold wire was used, with a preheated capillary.  No problems 

Devices were next etched i n  CP4. Since the n a i l  head bond i s  made w i t h  
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material. 

with a 10 ~1 junction depth, required ra ther  heavy mesa-etching. 

this resul ted i n  undercutting of the aluminum layer  below the gold bond, 

w i t h  resu l tan t  separation of the bond f r o m  the device, This problem was 

not experienced i n  the 5 p structures,  where the etching cycle was con- 

s iderably shorter. 

i) After etching, the devices were boi le3  i n  deionized water and t r ichloro-  

ethylene, and baked out a t  250' C for a short  in te rva l  of time. 

t rouble  w i t h  surface phenomena was encountered a t  t h i s  juncture. 

were  qui te  e r r a t i c ,  w i t h  leakage currents ranging from under 1 na t o  values 

i n  excess of 50 pa! 

excessively low values of breakdown voltage. 

enced on over 50% of the devices, experiments were conducted t o  improve the 

y ie lds  leading t o  the following processing s teps  which were found to  be 

successtkl: 

I n  t h i s  manner, a mesa s t ructure  was produced. Early devices, 

Often, 

Considerable 

The r e su l t s  

I n  addition, devices with excessive leakage showed 

Since t h i s  problem was  experi- 

The devices were r insed i n  d i lu te  hydrochloric acid f o r  a few seconds 

t o  remove the unmasked aluminum layer.  

ionized water, the devices were etched for 30 seconds i n  CP-4. Fresh 

etchant was used w i t h  each device. Devices were r insed i n  de-ionized 

water and then a i r  dried, 

proprietary cleaning agent similar t o  C C1 

pure grade), A 30 minute bake-out was provided a t  250' C. 

As a result of the above processing, over 80% of om devices were satis- 

Consequently, no 

After a br ie f  r inse  i n  de- 

The devices were boiled i n  Transcene ( a  

available i n  an ultra- 4, 

factory (leakage current < - 10 na a t  10 vo l t s  reverse bias) .  

fur ther  attempts were made t o  improve upon this  procedure, 
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j )  

display the junction, which was typical ly  10 p deep i n  the i n i t i a l  diffusions, 

and 4 p deep i n  the more recent devices. 

k)  

v o l t s )  were next checked for  capacitance a t  three values of reverse b ias  (3, 

4.5 and 7.5 volts) .  

graded (n = 1/3). 

areas of the d i f fe ren t  diodes. Only slight var ia t ion  was seen from device 

t o  device (Values of C a t  7.5 vol t s  ranged from 4.95 pf t o  3.81 pf). 

design curves* f o r  the capacitance o f  a graded junction, t h i s  would indicate 

junction areas from 105 sq. mils t o  81 sq. m i l s .  

With a number of devices, angle l a p  and s ta ining techniques were used t o  

Diodes, with “sat isfactory” reverse charac te r i s t ics  (under 10 na a t  10 

A plo t  of the  C-V curve showed that the diodes were 

The capacitance data allowed checking the comparative 

Using 

For each device, the breakdown voltage was noted as  wel l  a s  the nature 

I n  addition, of the breakdown charac te r i s t ics  (Le .  hard vs. s o f t  breakdown). 

the forward voltage drop was also measured a t  two values of forward current 

(10 ma and 50 m a )  i n  order t o  determine if th’e forward paras i t ic  resistance 

had been increased by the introduction of nickel. 

A t  t h i s  p i n t  the diodes were tested f o r  reverse recovery i n  a special  

test j i g  t h a t  was used in  conjunction w i t h  a sampling oscilloscope. 

of the ac tua l  measurement procedure and i ts  theore t ica l  basis  a re  given i n  

Appendix B. 

t o  representative devices nickel-doped a t  temperatures from 900’ C t o  1150’ C. 

For comparison, data on a high speed gold doped diode (type 1Ng14) i s  also 

shown. 

Details 

Included a re  also examples of the application of th i s  method 

B e l l  System Tech. J vol. 39, p. 389-404 * Warner, R. M. and Lawrence, H., - - 2, 
March, 1960. 



t -  
1 -  
8 
1 
I 
1 
1 
1 
I 
8 
1 
I 
8 
I 
I 
8 
I 

- 14 - 

Figure 4 shows the results of l i fe t ime measurements on various 

devices that  were nickel diffused over the range of 900' C t o  11470 C. 

The individual points correspond t o  separate devices, w i t h  the device 

number marked i n  each case. 

the data i s  shown i n  addition t o  the magnitude of the l ifetime. 

I n  t h i s  manner, the degree of spread i n  

The following points of in te res t  a re  noted: 

a )  

l i f e t ime  of about 70 nanosecs. 

b )  

400 nanosecs. 

deep ly ing  impurities (such as copper and gold) by the nickel. 

the s o l i d  so lub i l i t y  of act ive nickel i s  considerably l e s s  than tha t  

of these impurities, the  l i fe t ime enhancement e f f ec t  due t o  t h e i r  

removal predominstes over the l ifetime degredation e f f ec t  due t o  nickel 

diffusion, 

c )  

u n t i l  a diffusion temperature of 1093' C is  reached. 

the f a c t  that increasingly large amounts of act ive nickel a re  present 

a t  higher temperatures. 

The i n i t i a l  material  ( rotated Czochralski-grown n-silicon) had a 

On nickel diffusion a t  900' C f o r  one hour, the l i fe t ime rose t o  

This i s  due t o  the gettering action* of i n i t i a l l y  present 

Since 

With increasing temperature, the minority ca r r i e r  l i fe t ime fa l l s  

This i s  due t o  

Bakanowski and For s t e rw  have shown that ,  f o r  gold i n  l o w  r e s i s t i v i t y  

s i l icon,  the l i fe t ime i s  inversely proprtiozlal  t o  the number of gold 

centers. We do not f i nd  this t o  be the case with nickel, and ascribe 

t h i s  t o  the  f a c t  that nickel i s  a two-level recombination center, and 

a l so  t o  the f a c t  that nickel  provides i n i t i a l l y  a get ter ing action f o r  

impurit ies already present i n  the si l icon. A bes t - f i t  straight l i n e  i s  

drawn through the points over the range 900' C t o  l O g 3 O  C. 

* Silverman, S. J. and Singleton, J. B., Jour. Electrochem. e., v. 105, 
P. 591, 1958. 

p. 87 (1960). 
wt Bakanowski, A. E. and Forster, J. H., B e l l  System Tech. -0, Jour v9 39, 

8 
- - 



'1 
I 
I 
I 
I 
I 
1 
8 
I 
8 
1 
I 
I 
8 
8 
8 
8 

- 15 - 

d)  

a value close t o  that f o r  the undoped material. 

ver i f ied  on a number of devices from different  wafers, and has been 

ascribed t o  the f a c t  t ha t  a large amount of the nickel  is  essent ia l ly  

combined with the s i l i con  t o  form nickel s i l i c ides ,  having a lower 

capture crossection t o  minority carr iers  than that of the or ig ina l  

ac t ive  nickel. 

Diffusion a t  1 1 4 7 O  C r e su l t s  i n  a rapid increase i n  l ifetime, t o  

This anomaly was 

It was not possible t o  show the manner i n  which the leakage current 

var ied w i t h  the nickel doping level. This w a s  due t o  the f a c t  that this 

current ( i n  our mesa s t ruc tures)  was of ten dominated by the presence of 

surface s ta tes .  The leakage current was  measured on some devices which 

were heavily doped w i t h  nickel, i n  which surface e f f ec t s  appeared small 

(i. e., diodes w i t h  sharp breakdown character is t ics ,  i n  the neighborhood 

of 60 vol ts) .  

diode of t h i s  type, nickel  diffused a t  10470 C. 

age current i s  predominantly due t o  charge generation* i n  the depletion 

layer.  This charge generation takes place a t  various deep lying s i t e s  

i n  the forbidden band and i s  thus enhanced by the presence of nickel. 

I n  passing, it should be noted that this leakage current i s  about 100 

times as large as what would be expected f o r  a typ ica l  s i l i con  p n  

junction diode tha t  was not nickel  doped. 

Figure 5 shows the leakage current of a representative 

As expected, th i s  leak- 

2.3.4 

A number of attempts were made t o  diffuse nickel from a glassy souce .  

Diffusion from a Glassy Source -- 

These met w i t h  no success a t  first. Bowever, some success wits achieved 

i n  our l a t e r  experiments. These experiments haTre shown that it i s  possible 

t o  obtain a reasonable qual i ty  glass containing nickel  on the surface of 

* Sah, C. T.  e t  al, "Carrier Generation and Recombination i n  PN Junctions 
and PN Junction Characterist ics" 7 -  Proc. - IRF, v. 45, p. 1228-1243 (1957). 
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a s i l i c o n  wafer. 

system) can be removed without apmrent surface damage t o  the s i l icon.  

I n  addition, compensation effects  have been noted when th i s  glass was 

used as  a diffusion source. 

i n  Appendix C, with suggestions f o r  addi t ional  work t h a t  is  required 

before a completely sa t i s fac tory  process can be considered t o  have 

been developed. 

It has a l so  been shown that t h i s  glass  (NiO-V 0 
2 5  

Details of these experiments are provided 

2.4 Conclusions 

This study has investigated the f e a s i b i l i t y  of using nickel a s  a 

subs t i t u t e  f o r  gold i n  s i l icon.  It has been shown that 

a )  Nickel can be used t o  reduce l ifetime t o  the l e v e l  normally required 

i n  high speed switching devices. 

s i l i c o n  i s  considerably more complex than that of gold due t o  e f fec ts  

a t  both extremes of the diffusion temperature range. 

However, the behavior of nickel i n  

I n  addition, the 

l i fe t ime degredation e f f ec t  i s  a more strong function of temperature 

than f o r  gold, leading t o  a more severe control problem during the 

diffusion step. 

b )  

high speed switching devices where low r e s i s t i v i t y  materials are  used 

( 5  0.5 ohm-an). 

ac t ive  nickel  i s  doubly ionized i n  these materials. 

c )  

source can be stripped (with d i f f i cu l ty )  without apparent damage t o  the 

s i l i con  wafer. Thus, it should be possible t o  diffuse nickel from the 

top  surface of a s i l i con  microcircuit. 

Compensation e f f ec t s  of nickel  i n  s i l i con  are  not of importance i n  

This i s  true, not withstanding the f a c t  t ha t  the 

Nickel can be diffused f r o m  a glassy source. In  addition, t h i s  
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3. NOISE IMMlTNITy IN MICROCIRCUITS 

3.1 The Problem - 
The microcircuit, w i t h  i t s  small size,  low power dissipation, and 

high r e l i a b i l i t y ,  has already found wide usage i n  complex subsystems 

that w e r e  considered imprac t ica la  few years ago. The present trend 

t o  the integrat ion of even more complex subsystems places an increasing 

emphasis on the design of microcircuits that can be eas i ly  combined i n  

large ensembles. Most present day microcircuits a re  designed w i t h  the 

emphasis placed on the attainment of performance parameters. These 

include such terms a s  propagation delay, fan-in, fan-out, and power 

d i s s i p t i o n .  O f  equal (but of t e n  considered secondary) importance 

a re  those charac te r i s t ics  which w i l l  determine the a b i l i t y  of a single 

c i r c u i t  t o  be used i n  a var ie ty  of environments w i t h  a minimum of 

"hand trimming" and "de-bugging". 

a c t e r i s t i c s  is  the a b i l i t y  t o  have a high degree of immunity t o  noise, 

i n  both the "on" and "off" s ta tes .  

eliminate, the need for  a t ten t ion  t o  precise clocking and phasing, as  

wel l  a s  the need for elaborate shielding and grounding. 

The most important of these char- 

This a b i l i t y  w i l l  reduce, o r  

The saturated log ic  gate i s  today the most widely used building 

block f o r  microelectronic computing elements. It i s  operable over a 

wide range of temperatures and parameter spread; while not as fast a s  

i t s  non-saturated counterpart, it operates a t  lower power diss ipat ion 

levels,  and does not amplify signals (both wanted and unwanted) i n  

t h e i r  passage through the gate. 
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A t  low operating speeds, the noise immunity of a saturated gate 

can be made a r b i t r a r i l y  high by increasing the threshold a t  which the 

gate operates. This technique resu l t s  i n  increasing the propagation 

delay through the gate, but t h i s  increase can be avoided by using an 

inherently faster device i n  the gate design. 

With high speed gates ( 5  4 nsecs propagation delay), it is  

necessary t o  e f f ec t  a t rade between the noise immunity and the pro- 

pagation delay. Thus, it is  necessary t o  c r i t i c a l l y  determine the 

noise capabi l i ty  of the gate, taking in to  consideration the nature of 

the noise s ignals  t o  which it i s  subjected. 

3.2 - The Approach 

I n  t h i s  program we have concentrated our study on the saturated 

t ransis tor- t ransis tor- logic  ( S L )  gate. This gate i s  becoming recog- 

nized as the one t h a t  has the greatest  potent ia l  f o r  high speed 

operation i n  the saturated mode. Over the l as t  two years, an increasing 

number of manufacturers have been developing c i r c u i t  l i nes  using t h i s  

type of gate. 

There are  e s sen t i a l ly  two types of "noise" that  can cause malfunction 

i n  a d i g i t a l  c i rcu i t .  The f i rs t  of these, commonly referred t o  as d-c 

noise, i s  characterized by i t s  presence i n  the form of pulses that  a re  

so wide that they present, i n  essence, a d-c input t o  the gates. Such 

pulses are commonly associated w i t h  parer supply t rans ien ts  and resis- 

t i v e l y  coupled paths. The second type of noise i s  known as pulsed 

noise. Far more frequently enco-antered, t h i s  noise consists of low 

duty cycle pulses, and i s  capable of being generated or picked-up when- 

ever short  rise-time signals are  being transmitted o r  processed. 
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I n  this  study we have attempted t o  evaluate these sources of 

pulsed noise i n  micmcircuits,  and determined the manner i n  which t h i s  

noise pick-up can cause a malfunction i n  the basic T L gate. I n  

addition, we have shown a correlation between th i s  pulsed noise 

2 

immunity and the in te rna l  device parameters of the gate. Finally, 

we have shown that it i s  possible t o  design the gate for a specified 

value of pulsed noise immunity without Lmnecessarily compromising i ts  

performance. 

3.3 Program Effor t  

3.3.1 

A detai led study of pulsed noise has been undertaken. 

A Study of Pulsed Noise - - 
Since the 

t r ans i s to r  i s  essent ia l ly  a charge controlled device, t h i s  study has 

concentrated on determining the charge content of the various forms of 

noise that may be encountered. Details of the study are  outlined i n  

Appendix D. 

The following conclusions have been made concerning the nature of 

noise s ignals  generated i n  d i g i t a l  c i rcu i t s :  

a )  

high charge content) a re  those generated i n  coupled interconnection paths 

The most serious forms of pulse noise (having wide pulse widths  and 

between c i r c u i t  boards, and those caused by mistiming. 

b)  

stage is capable of to le ra t ing  noise signals of the former type, it is 

Other noise sources a re  of secondary importance. Thus, if  the logic  

not necessary t o  consider the l a t t e r .  
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3.3.2 D.C. Terminal Characterist ics 

2 A T L gate w a s  designed and constructed using high speed t rans is tors  

(2N709) f o r  both the coupling and inverting elements. 

gate was operated with a propagation delay of 3-4 nsecs. in to  a fan-out 

of 4. This gate was used as the vehicle f o r  test  i n  the experiments. 

Under t e s t ,  t h i s  

An elementary analysis was made of the input and t ransfer  charact- 

e r i s t l c s  of t h i s  gate. 

charac te r i s t ics  was suf f ic ien t ly  close so t h a t  a more detailed analysis 

was not found necessary. Tnis analysis, together with the experimental 

data f o r  t h i s  gate, a r e  outlined i n  Appendix E. Using the analysis, the 

d.c. noise rnargin of the gate was obtained. 

Correlation with the experimentally meazured 

The noise immunity of a gate of t h i s  type is  commonly expressed by 

manufacturers i n  terms of t h i s  d-c t ransfer  charac te r i s t ic  (10% 

by some and 50% by others).  This is  qui te  misleading, since it does 

not take in to  account the nature of the  nalfunction signals t h a t  a r e  

presented t o  the gate, and a l so  since it re fers  t o  a region of the gate 

where the charac te r i s t ics  a re  rapidly changing. 

3.3.3 Switching Characterist ics 

A dynamic analysis was made of the switching charac te r i s t ics  of the 

gate i n  order t o  determine which internal  parameters are of significance 

i n  computing the propagation delay. This analysis i s  outlined i n  

Appendix F. It is  seen t h a t  the turn-on delay is  a s ignif icant  f ac to r  

i n  the propagation delay. This term i s  controlled by the paras i t ic  

capacitance a t  the base of the inverter t rans is tors ,  and by the base 
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resis tance of the coupling t rans is tor  through which it i s  charged. 

I n  addition, it i s  seen t h a t  the storage time of the inverter  

t r a n s i s t o r  Q 

the co l lec tor  of Q 

&2. The expression f o r  f a l l  time is complicated since the equation 

governing t h i s  parameter i s  nonlineafl due t o  the f a c t  t ha t  the base is 

i s  controlled by the pa ras i t i c  resistances associated with 

and Qo, and with the base spreading resistance of 

2 

1 

essent ia l lyshorted t o  ground (through the  coupling t rans is tor  and 

the previous inverter  stage).  

3.3.4 Noise Immunitx 

The noise immnity f o r  the gate was measured, by feeding in to  i ts  

input narrow pulses with short  r i s e  times. 

a t o r  was used fo r  t h i s  purpose, the pulse length being s e t  by means of 

delay l i n e s  of variable length. A t  the outset ,  there was  considerable 

d i f f i c u l t y  i n  determining the magnitude of the output s ignal  t h a t  should 

be interpreted as a zalfunction indication. (This problerr, i s  especial ly  

serious with f a s t  r i s e  time pulses where the e f f ec t  of Miller capacitance 

i n  the t rans is tors  r e su l t s  i n  an output f o r  a l l  values of input s ignal . )  

A mercury relay pulse gener- 

- 
It was decided t h a t  a d i g i t a l  indication of m l f s i c t i o n  should be 

With t h i s  i n  mind, a sensit ive,  high speed unloaded f l ip - f lop  used. 

w a s  hung on the gate t o  provide t h i s  information. 

Experiments conducted w i t h  t h i s  c i r c u i t  showed t h a t  the malfunction 

s igna l  was a c r i t i c a l  function of the malfunction indicator  a s  w e l l  as 

of the gate under test .  

indicator, made with gates ident ical  t o  the one under t e s t ,  would have 

Accordingly, it w a s  decided t h a t  a malfunction 

* Thiney, A. "Rise and F a l l  Times of Transistors i n  Switching Operation 
Regardless of the Driving Source Impedance", IEEE Trans. on Elec. Comp., 

VOL EC-13, p. 616-620, 1964. 
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s igni f icant  advantages over the previous indicator. Thus, 

a )  

rather,  gates) under t e s t .  

b )  

Thus, w e  consider malfunction t o  have occurred when the input noise pulse 

t o  a gate i s  su f f i c i en t ly  large so a s  t o  transmit log ica l  information t o  

the succeeding stages. I n  t h i s  manner, we define the noise immunity of 

a gate  i n  terms of i t s  a b i l i t y  t o  prevent the flow of error-causing signals 

t o  successive c i rcu i t s .  

The noise immunity would now be only a function of the gate (or  

The r e su l t s  would specify a more functional value of noise iLmmunity. 

Our experiments were conducted with discrete  components, t o  which 

pa ras i t i c  capacitances were added whenever necessary. If ac tua l  micro- 

c i r c u i t  gates are being tested,  the measurement of pulse noise immunity 

should be done by interconnecting them a t  t h e i r  terminals, without the 

necessity of making in t e rna l  connections. 

f o r  evaluating competitive microcircuits a r e  immediatelj apparent. The 

measurement scheme thus takes the  form shown i n  Figure 6. 

The advantages of t h i s  approach 

2 The analysis f o r  the pulse noise immunity of tine T L gate is detailed 

i n  Appendix G. Here, expressions are derived f o r  the input current as a 

function of pulse width required t o  cause malfunction, and excellent cor- 

r e l a t ion  i s  seen t o  e x i s t  between theory and experiment. 

w a s  repeated f o r  the same c i r cu i t ,  using 2x796 devices (which a re  con- 

siderably slower) f o r  the individual elements. Again, the r e su l t s  w e r e  

predictable from the theore t ica l  analysis. 

The experiment 

The analysis  shows t h a t  T, th? width of the pulse required t o  cause 

a malfunction, i s  given by 
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where 7, and K are constants f o r  a given c i r c u i t s ,  and I i s  the  current. 

I n  addi t ion ,  it i s  shown t h a t  K i s  a func t ion  of t h e  r i s e  time alone, 

while 7 i s  a func t ion  of t u r n  on delay and storage time. 
0 

The c i r c u i t  has e s s e n t i a l l y  i n f i n i t e  pulse immunity when the  input 

no ise  pulse width is  l e s s  than  the  sume of t h e  t u r n  on delay and the  storage 

t i m e .  On t h e  o the r  hand, t h e  p r o p g a t i o n  delay through the  s tage  i s  given 

by 

t = t + 0.5 t o r  Pd d r.’ 

Pd s 
t = t + 0.5 tf.  

whichever i s  larger+. Thus, tnere  is some degree of independence between 

these  parameters, so t h a t  there  i s  design freedome i n  t he  choice of these  

two c i r c u i t  p roper t ies .  

It is  c l e a r  t h a t  t h e  proposed method of test  can be d i r e c t l y  applied, 

i f  required, t o  a measurement of the d.c noise margin of t he  gate. 

Because of the  feedback ac t ion  of  the  cross-coupled gates, the  t r a n s f e r  

func t ion  has a n  abrupt t r a n s i t i o n  region, and the re  i s  thus no problem 

of i n t e r p r e t a t i o n  i n  computing this data from t h e  curve. 

3.4 Conclusions 

I n  t h i s  program, a study has been made of the  sources of spurious 

noise s igna l s  i n  high speed switching c i r c u i t s  using sa tu ra t ed  l o g i c  

gates.  

of such ga tes  t o  noise pulses.  This method involves the  d i r e c t  use of 

t h r e e  interconnected ga tes  without any add i t iona l  c i r c u i t r y ,  and provides 

a func t iona l  determination of the  noise immunity c h a r a c t e r i s t i c s  of t h e  gate. 

A new method has been proposed f o r  cha rac t e r i s ing  the  performance 

* Industry p rac t i ce  i s  t o  avexage these two. This, of course, always gives 

Pd’ 
a more op t imis t i c  value f o r  t 
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The noise immunity h:Ts been calculated a s  a func t ion  of device 

parameters. 

"fast" a s  w e l l  as '!slow" gates. 

t h a t  govern the  propagation delay through the  ga te  a l s o  cont ro l  i ts  

This ca l cu la t ion  has been experimentally v e r i f i e d  f o r  both 

It i s  shown t h a t  many of the parameters 

no ise  irmunity. 

a ga te  wi th  optimum noise immunity f o r  a f ixed  propagation delay. 

On the  o the r  hand, t h e r e  i s  some freedom i n  designing 

This may be a t t a i n e d  by designing the c i r c u i t  with a shor t  r i s e  time, 

and r e l a t i v e l y  long t u r n  on delay and s torage  time. 

4. 

4.1 The Problem 

OSCILLATION HAZARDS IN ASYNCHRONOUS SEQUENTLAL CIRCUITS 

It has been observed t h a t  sone sequent ia l  c i r c u i t s  constructed from 

very  f a s t  nor gates ( f! 4 nanosecond de lay)  w i l l  o s c i l l a t e  when inputs 

a r e  changed simultaneously. I n  synchronous c i r c u i t s  t h i s  d i f f i c u l t y  does 

not arise s ince  a s ing le  clock t r a n s i t i o n  i s  use2 t o  i n i t i a t e  computation 

of t h e  next s t a t e .  

e x t e r n a l  device ( i . e .  a radar) such synchronization i s  not possible. 

It i s  o f  considerable i n t e r e s t  t o  determine if  such problems can be 

eliminated by proper design or i f  fundamental d i f f i c u l t i e s  a r e  involved. 

4.2 The Approach 

However, a t  the i n t e r f a c e  between computer and 

Many s p e c i a l  c i r c u i t s  have been inves t iga ted  and i n  a l l  cases no 

design was found which eliminated the p o s s i b i l i t y  of o s c i l l a t i o n  when 

the  c i r c u i t  required t h a t  a terminal state depends on t h e  sequence of 

changes of a pair of input variables.  It w a s  therefore  decided t o  see 

if it could be proved t h a t  such a design w a s  impossible. 
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4.3 Program Effor t  

Two theorems have been proved which show,under assumptions usually 

v a l i d  i n  the design of sequential  c i rcui ts ,  that such a des ign i s  i n  

f a c t  impossible without the use of frequency band l imit ing devices i n  

the  feedback loops. 

can be found for which the combinational log ic  is  hazard f r ee  when s i m u l -  

taneous input changes a re  allowed. The second theorem indicates that 

even with hazard f r ee  combinational logic, correct sequential act ion 

places s t r igent  l imitat ions on the narrowness of pulses which can be 

passed through the feedback connections. 

The first theorem shows that no s t a t e  assignment 

A detailed discussion of the background of the problem and the 

statement of the theorems is  given i n  Appendix H, and t h e i r  proofs i n  

Appendix I. 

4.4 Conclusions 

It has been concluded tha t  asynchronous c i r cu i t s  cannot be re l iab ly  

constructed from very f a s t  log ica l  devices if simultaneous input changes 

a re  possible, unless some method i s  available f o r  eliminating short  

p-ulses i n  the feedback loops. The i n e r t i a l  delay of Unger i s  one element 

that can be used f o r  t h i s  purpose. However, it has been shown t h a t  the 

r ea l i za t ion  of t h i s  device a s  described by Unger i s  i t s e l f  subject t o  

the hazards described here. 
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Appendix A 

S t a t i s t i c a l  Consideration of Nickel as  an Impuritx i n  n-type Si l icon -- - - 

I n  order t o  f ind  the f r ee  ca r r i e r  densit ies which would occur i f  a sample 

of n-type s i l i con  were doped w i t h  nickel, one needs t o  know only the or ig ina l  

donor concentration and the energy levels  of nickel i n  s i l icon.  From t h i s  

information the Fermi level,  and thus the c a r r i e r  densit ies,  of the nickel- 

doped sample can be obtained s t a t i s t i ca l ly .  

MD 

Let %i be the t o t a l  concentration of act ive nickel, %T be the con- 

centrat ion of nickel i n  the double acceptor s ta te ,  and %y be the concentration 

of nickel  i n  the single acceptor s ta te .  

nickel  s t a t e s  i s  law, so that interactions between them can be ignored. 

addition, considerations of degeneracy can be neglected, since these a re  only 

It i s  assumed that the density of 

I n  

important i n  determining the l imit ing r e s i s t i v i t y  of the doped material. 

Using the arguments of Shockley and Last*, it may be shuwn that 

Writing the charge neut ra l i ty  equation, assuming tha t  a l l  of the shallow 

donor s t a t e s  may not necessarily be ionized, we obtain 

p - n + M , . , - N , , - 2 b $ ~ - ~ ~  = O  
1 

where N is  the density of electrons a t  the donor level.  D 

8 *Shockley, W. and Last, J. T., RRI. RZ, v. 107, no. 2, p. 392-396, July 15, 1957. 
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I n s e r t i n g  the  known s t a t i s t i c a l  re la t ionships ,  gives 

- 
1 + exp - E$)/kT] + exp [ (Em? + EN? - 2 %)/kT ] 

= o  

where E = 0.57 ev above valence band 

= 0.23 ev above valence band 

= 0.35 ev below conduction band, and 

= 0.04 below conduction band f o r  phosphorous-doped s i l i c o n  a t  300 

i 

ENi-  

%i= 

ED 
0 K. 

Graphical so lu t ions  t o  t h i s  equation, showing the  Fermi l e v e l  E as a F 
func t ion  of M,, f o r  var ious  %i ( a t  300' K )  a r e  shown i n  Figure A-1. 

relates t h e  o r i g i n a l  donor concentration pr ior  t o  n icke l  doping, t he  concentrztion 

of "active" n i cke l  wi th  which the  samples a r e  doped, and t h e  r e s u l t i n g  f r e e  carrier 

This f igu re  

concentrations. The Fermi l e v e l  fo r  the  sample i s  also displayed i n  t h i s  f igure .  

I n  conclusion it must be emphasized t h a t  MNi i s  the  concentration of ac t ive  

nickel,  and not t he  t o t a l  n i c k e l  content given by the  s o l i d  s o l u b i l i t y  l i m i t .  
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Appendix B 

The Measurement - of Minority Car r i e r  Lifetime - 
The dLode recovery method i s  commonly used f o r  t he  measurement of short recoveiy 

t imes ( i n  the  fianosecond range)  s ince  -it i s  considerably e a s i e r  t o  implement than the 

xore common "photoconductive decay" method. The method, as described by Kingstc;n*, 

c o n s i s t s  of  applying a step of current ,  5, t o  a p n  junc t ion  and suddenly revers ing  

the cu r ren t  t o  a new value,  %. 
c a r r i e r s  a r e  swept ou t  of  t he  device, r e s u l t i n g  i n  a " f l a t - t o p  region", denoted by t_  

ir, Figure B-1. Once the  c a r r i e r s  a r e  swept out,  t he  cu r ren t  decays t o  a f i n a l  value 

This sudden r e v e r s a l  i s  m i n t a i n e d  a n t i 1  a l l  minority 

3 

glven by t h e  diode leakage cur ren t .  Knowledge of the  l eng th  of  t he  f l a t - top ,  and of 

the  decay time, can be used t o  compute device l i f e t ime .  The r e s u l t s  of Kingston can 

o d y  be appl ied  t o  a l l o y  junc t lon  devices, and are not appl icable  t o  high speed dlffuced 

s t r u c t u r e s  wi th  any degree of accuracy. 

This method has r e c e n t l y  been extended by KunoH t o  high speed s t ruc tu res ,  using the  

charge c o n t r o l  method of ana lys i s .  Following t h e  ana lys i s  of Kuno, we def ine  forward and 

rc-verse recombination r a t e  cons tan ts  7 and 3' F R 

of decay of s to red  charge i n  a diode during t h e  forward and reverse  switching time. If 

the  diode i s  swtiched ins tan taneous ly  f ron  a forward cur ren t  of 5 t o  a reverse  cur ren t  

of 5, Kuno  has shown t h a t  t he  " f l a t - top"  region i s  given by 

r e spec t ive ly  pe r t a in ing  t o  the  dynallics 

*Kingston, R. H. "Switching Time i n  Junct ion Diodes and Trsns is tors" ,  Proc. IRE, v. 42, 
14~. 3 ,  p. a29-834, 1954. 

+YSuno, H. J. "Analysis and Character izat ion of P-N J r n s l o n  Diode Switching", IEEX Trans. .-.- on a i e c t r o n  Devices, ED-11, No. 1, p. 8-14, 1964. 

1 
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Thus, i f  we p l o t  t 

Elope of TF. 
n region of the  diode, i f  0' 2d 

P n  

a s  a Fmct ion  of l n ( 1  + IF/$), a s t r a i g h t  l i n e  i s  obtained with a 
S 

It has a l s o  been shown that  rF i s  the minority c a r r i e r  l ifetinie for th+s 

(as  is the ease i n  our s t r u c t u r e s ) .  

Figure B-2 shows the t e s t  j i g  used t o  make these measurements. I n  each case, t h e  

values of forward and reverse current were read d i r e c t l y  off the oscilloscope. The 

zethod provided a simple check on the accuracy of the measurements, s ince t h i s  curve 

should be a s t r a i g h t  l i n e  over a la rge  range of  +/% values. This w a s  indeed found 

t o  be the  case f o r  our devices. 

Figilre 3-3 t o  B-9 show representative measurements made on our s t ructure ,  as w e l l  

a s  con2arative measurernents on a lr-glh dtode. 

t.hc 1:~.7e. A sampllng oscil ioscope w a s  used for taking these measurements, with a t l e a a t  

I n  each case, the slope yF i s  marked or 

- aata points  taken i n  each case a s  a check on the measurement Tethod. 
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Appendix C 

The Dif fwion  of Nickel from a Glass2 Soiurce - --- 

!The following i s  a desc r ip t ion  of the work conducted t o  date on I m e s t i g a t i n g  

t h e  f e a s i b i l i t y  of d i f fus ing  n i cke l  from a g lassy  source: 

a )  A study has been made of t h e  chemistry of n i cke l  compounds t o  a s c e r t a i n  which 

of t hese  i s  most s u i t e d  for t h i s  application. This has concentrated our 

e f f o r t s  t o  t h e  use of n i c k e l  oxide, NiO. This oxide takes  the  form of' a 

greenish powder, which m e l t s  a t  1990" C. 

b) A l i t e r a t u r e  search w a s  made f o r  the  phase diagram of the  NiO-Si0 system. 

Such a diagi-c . vas not found. Consequently, an a t t e m p  ~2 %de t o  see i f  

2 

NiO w a s  soluble i n  S i0  a t  d i f fus ion  temperatures. A wafer cf s i l i c o n  was 

thermally oxidized a t  1000 

w a s  dusted on the  oxidized surface and the  wafer heated f o r  one hour a t  

2 
0 C (using a dry 0 -steam-dry O2 cycle).  Dry N i O  2 

1150' C. On removal, t h e  w a f e r  w a s  subjected t o  microscopic examination. 

While the  N i O  had s in t e red  t o  the  Si02 layer,  no s igns  of a so lu t ion  were 

found. 

e )  The next experiment was conducted i n  an  atteinpt t o  dissolve N i G  i n t o  a glass 

that i s  i'ormed on the  wafer using Si0 and an e l e c t r o n i c a l l y  inac t ive  oxide. 2 

,-ye - ;bO-SlG sys ten  w a s  se lec ted ,  since l ead  is known t o  be 'Inactivs in 

s i l i c o n .  

-_ 
2 

3'i;xe C - 1 shows the  phase diagram f o r  t he  PbG-Si0 systen. It i s  

A wafer of 

2 

zzeri t n a t  l l q u i d  phase e x i s t s  a t  temperatures above 720' C. 



s i i i c o n  w a s  oxidized as described before,  and i n s e r t e d  i n  a closed box with 

a Pb3 source. The wafer w a s  heated t o  900 C f o r  one hour, and examined. 

While a ipbO-Si02 g la s s  was c e r t a i n l y  formed, t he  sur face  condi t ion w a s  very 

poor w i t h  s igns  of excessive p i t t i n g  and crazing. 

0 

It would appear t h a t  a 

s u i t a b l e  technique could most probably be developed for fomdng a uniform 

crack-free g lass  on t h e  wafer. However, t i m e  d i d  not  permit r e f i n i n g  t h i s  

s tep ,  so the  experiment w a s  extended t o  see  i f  n i cke l  would d isso lve  i n  

t h i s  g lass .  A l a y e r  of N i O  was dusted on the  wafer and t h e  wafer subjected 

t o  a one hour d i f f u s i o n  cycle  a t  100Co C. Af t e r  d i f fus ion ,  the  wafer was 

o$ical ly  inspected f o r  s igns  of so lu t ion  of N i O  i n  the  g lass .  Resul t s  

were inconclusive.  

..) A s tudy  of the  metal-oxide phase dlagran l i t e r a t u r e  revealed t h a t  Hi0 can 

be used wi th  vanadium pentoxide (V 0 ) t o  produce a . g l a s s  a t  temperatures 

In  excess of 650 
2 5  

0 C. (The 2hase diagram f o r  t h i s  system i s  shown i n  Fig. C-2)  

Since vanadium i s  a l s o  inac t ive  i n  s i l l con ,  the  scheme was atterrpted a s  

follcws: F i r s t ,  V 0, w s s  dusted over a wafer of s i l i c o n  and placed i n  a 
2 ,  

d i f f u s i o n  furnace f o r  an  hour a t  1000" C. On rmoval from the  f l i rn ics ,  the  

m f e r  was cleaned i n  hot KOII. This reixoved the  V 0, r ead i ly ,  leaving an 

v.ndav&aged s i l i c o n  surface.  

2 ,  

I n  order  t o  t e s t  the  f e a s i b i l l t y  of using t h i s  oxiri as a c a r r i e r  of 

nickel ,  a f r e s h l y  etched sample of s i l i c o n  w a s  coated wi;h a s k n r y  of Xi0 

and V 0 

etbylene g lycol  base)  and dlffused f o r  one hour a t  1000 

(one p a r t  by weight of N i O  t o  t e n  p a r t s  by weight of V 0 i n  an 
2 5  2 5  

c)  
C. On repoval 

f r o x  t h e  furnace,  t he  glass w a s  removeci, wi th  somn d'i'ficiilty, by a hoz 

KOH treatment.  The sur face  of the  s ' i l lcon w a s  Lnspected v i sua l ly ,  and found 
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. The i -es i s t i - f i ty  of t h e  we was  found t o  be increased by 

_ _  cc-inll~ded t h a t  t h i s  i s  due t o  the  d i f fus i cn  

of N i  from the  V 0 - N i O  source. Tine d id  not permit t h e  de t a i l ed  inves t i -  

ga t ion  of n i cke l  d i f fus ion  from t h i s  source over a range of t y p i c a l  d i f fus ion  

temperatures. However, it i s  concluded that 

2 5  

a) Nickel can be diffused f ron  a NiO-V 0 

the  s i l i c o n  surface.  

The r e s u l t i n g  nickel-vanadim compounds can be renoved by the  use 

of hot KOH. 

g l a s s  with no damage t o  2 5  

b )  

c )  The n i cke l  $1 diffL:se L n  t h i s  manner show signs of e l e c t r i c a l  

a c t i v i t y  . 
Consldez-sbie fwt? -:r in-restigation i E  needed i n  order t o  a c t u a l l y  devise 

z p r a c t i c a l  ~ r s ? ~ - z  for  the  diffusion of n icke l  i n  s i l i con .  Spec i f lca l ly ,  

it i s  necessa-y t o  search for a l t E  -r?,ate zethods f o r  removing the  nickel- 

necessary t o  conduct 2 -xtensive r e r i ~ - ~  of coxpensation experiments t o  

determine the  amount of c’LcFel thn< c-:?tr?rs t h e  l a t t i c e ,  and a l s o  t o  deternine 

so?lght f o r  t ranspor t ing  the  NiO-V,-O= ,r,i;iture t o  the  s i l i c o n  wafer. 
i /  
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APPENDIX D 

Pulse Noise i n  Digi ta l  Circui ts  

Large scale  d i g i t a l  subsystems are  usually composed of a number of 

i t e ra ted ,  interconnected, log ic  function blocks. Thus, the problem of 

pulse transmission i n  these c i rcu i t s  i s  one of transmitt ing high f re -  

quency s ignals  i n  a large, wideband c i rcu i t .  For any individual logic  

gate i n  t h i s  c i rcu i t ,  spurious signals presenting themselves a t  i t s  

input a r e  due t o  one o r  more of the following reasons: 

a) Noise generated i n  the transmission l i n e  between gates, 

b )  Noise picked up i n  the transmission l i n e  between gates, 

c )  

d) iog ic  Noise 

noise transmitted f r o m  the output of the preceding gate, and 

I n  addition, the transmission l i n e  between different  gates is  of 

var iable  length, being under 1/2" long when interconnecting two gates 

that are  side by side, and more than a foot  .in length when the trans- 

mission l i n e  connects gates on separate c i r c u i t  boards. 

D . l  Noise Generated i n  Transmission Lines - 
Noise generated i n  transmission l ines  i s  a r e sv l t  of ref lect ions 

from improper terminations a t  e i ther  end of the l ine .  If a short  l i n e  

i s  used, such as i s  commonly the case between gates on the same c i r cu i t  

board, t h i s  noise has t he  nature of extremely high frequency ringing, 

a t  a frequency determined by the time delay of the l i n e .  Thus, a trans- 

mission Line 1/2* long gives r i s e  to noise components a t  frequencies of 

9 GHz and higher if improperly tem'inated. Since the fundamental f re -  

quency associated wi th  this  noise is well  beyond the band-w'dth of the 
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c i r cu i t ,  the problem may safely be ignored. 

high speed d i g i t a l  c i r cu i t s  which operate a t  reasonably l o w  impedance 

levels ,  and consequently are highly damped. 

This i s  especial ly  t rue  i n  

The s i tua t ion  i s  qui te  different  with transmission l i n e s  whose 

lengths are comparable t o  the r i s e  time of the c i rcu i t .  Here, reflec- 

t i ons  that occur are su f f i c i en t ly  long i n  duration that t h e i r  presence 

cannot be ignored. 

it i s  only possible a t  best  to provide a crudely matched terminaticn at 

both ends of the transmission l ine.  

t o r t i o n  of an otherwise rectangular pulse, and also r e su l t s  i n  spurious 

pulses, having a w i d t h  equal t o  twice the delay time associated with 

the transmission l ine.  

Since d i g i t a l  c i r cu i t s  present nonlinear impedances, 

This noise takes the Corm of d is -  

Pulse d is tor t ion  i n  transmission l i n e s  may be computed r e a d i l p  by 

considering separately the incident and re f lec ted  waves on the l ine.  

Figure D.1 shows the  equivalent c i r cu i t  of such a l ine.  A t  e i ther  

end of the l ine,  

t h e  Voltage Reflection Coefficient, f i s  given by 

the Current Reflection Coefficient, f i, i s  given by 

z - z  

the Voltage Transmission Coefficient, tv, i s  given by 

t 2 2  . 
z +z' v =  

0 

* :YlL??an, J. and Tadb, H. "Pulse and D i g i t a l  Circuit-",  McGraw H i l l  
Book Co., New York (1956). 
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and the Current Transmission Coefficient, tl, i s  given by 

0 
2 2  t -  

i -  zo + z 

The substi tution, Z = Z m u s t  be made i n  order f o r  these expressions t o  
g 

apply t o  the generator end. I n  l ike  mamer, the subst i tut ion Z = Z w i l l  

make the expressions applicable t c  5 - 2  h a d  end. 
1 

Figure D-2 shows a s i tua t ion  that occurs tyc:caily i n  a d i g i t a l  

c i r cu i t .  

charge? v i t h  the t r ans i s to r  open. 

lile l i n e  (having a character is t ic  impecmce R ) i s  i n i t i a l l y  
0 

A t  time t = 0, the t r ans i s to r  i s  

turned on, thus shorting the  previously charged l ine ,  Figure D-3 shows 

the waveform across t h e  load end (R ) f o r  the case where R 1 - - Ro’ as 

wel l  as f o r  the cases where R = 10 R and R = 3.1R . It i s  assumed 

t h a u  the l i n e  i s  charged t o  the steady s t a t e  i n  each case pr ior  t o  

1 

1 0 1 0 

t a m % n g  on the t rans is tor ,  and that  the t r ans i s to r  i s  a perfect switch. 

Figure D-3a shows the waveform a t  the load when the load and trans- 

mi.-cion l i n e  a re  matched. 

terminates a f t e r  delay of A seconds, where A i s  the t i ne  deiay of the 

l ine.  

For t h i s  case, the s ignal  across the load 

Thus, a n e t t  delay of A i s  incorporated in to  the c i r c u i t  for t h i s  

condition, 

Figure D-3b shows 

the voltage across the 

f i n a l l y  damped. I-Iere, 

the load waveform 

load goes through 

when R = 10 R . For t h i s  case, 

many reversals  u n t i l  it i s  
1 0 

the  charge associated with the first of these 

posit ive going reversals i s  given by 

Q = 0.67 Vcc d / R1 coulombs 



- 36 - 

I 
I 
I 
IC 

? 
B 

where V i s  the supply voltage f o r  t he  t r a n s i s t o r .  I n  order t o  avoid cc  

malfunction, it i s  necessary tkt the load c i r c u i t  have a pulse noise 

immunity i n  excess of t h i s  value. 

Figure D-3c shows the case where R = 0.1 Ro. For t h i s  t e m i n -  1 

a t ion ,  we note the  absence of pulses that  can cause malfunction. 

However, excessive pulse delay i s  the r e s u l t ,  s ince  the  c i r c u i t  re -  

cognizes the  cessa t ion  of the s igna i  many & L i ~ ; ~  times a f t e r  i t s  a c t u a l  

term i na t ion. 

The sitil?-uion i s  somewhat more complicated by the f a c t  t h a t  t he  

load  hpedance is, i n  r e a l i t y ,  no t  constant, but i s  given by the  in- 

put impedance of a T L gate. Thus, f o r  t he  first two cases, the  

load  t r a n s i s t o r  would s t a r t  t o  conduct a f t e r  a' time delay of . 

2 

A t  t h i s  ,oint, t he  load  impedance would abrupt ly  f a l l ,  an3 c lose ly  

approximate tha t  of a charged l i n e ,  shorted a t  both ends. Thus, 

it is  probable t h a t  t h e  a c t u a l  waveform would be r ap id ly  danped 

a f t e r  one or  two o s c i l l a t i o n s .  

D.2 Noise Pickup i n  Transmission Lines - 
One eonponent of t h i s  noise i s  assoc ia ted  with c ros s t a lk  bctween 

l i n e s .  Flgure D-4 shows a n  elementary system of t w o  loose ly  r c ~ - j l e d  

transmission l i nes ,  terminated i n  t h e i r  c h a r a c t e r i s t i c  ixpeJaricc Z . 
0 
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If C 

length ,  and M and L the  mutual and s e r i e s  inductances per  u n i t  length,  

i t  can be shown* that the  charge del ivered t o  Z v i a  the  backward wave 

i s  approximately given by 

and C M S a r e  t h e  mutual and shunt coupling capaci tances  per u n i t  

3 

Q = -  M .  K + l  . A .  dI 
L 2 K  

where i s  the  delay of  t h e  l i n e ,  

d I  is  the  magnitude of the  cur ren t  excursion a t  the  generator  

end, and 
I, 

M . bS K = -  - 
L cM 

Following d i r e c t i o n a l  coupler theory, i t  may be shown t h a t  t he  

charge de l ivered  to Z4 is  considerably smaller i n  magnitude. 

p r a c t i c a l  c i r c u i t  wi th  varying loads, good design p rac t i ce  ind ica t e s  

I n  a 

t h a t  both 

charge t h a t  i s  normally de l ivered  t o  Z,. 

and Z4 should be capable of  t o l e r a t i n g  t h e  ne l f znc t ion  "3 

3 

While the  expressLon f o r  malfunction charge indicate.. -,,at t ne  

cur ren t  l e v e l  can be ad jus t ed  t o  reduce t h i s  type of no:;e, ' t  is  

usua l ly  found i n  p r a c t i c e  t h a t  t h e  high speed pulse  c i r c u i t  designer 

i s  l i m i t e d  t o  a prescr ibed  range of cur ren t  va lues  i n  order  t o  achieve 

the  des i r ed  system performance. "he reason f o r  t h i s  i s  c l e a r  i n  the  

fundamental equations f o r  t he  charging t i m e  of t h e  var ious  elements 

of a t r a n s i s t o r .  

* J a r v i s ,  D. B. "The E f f e c t  of Interconnect ions on High Speed Logic Circuits:' 
LEEE Trans. on Elec. Comp., v. EC-12, p. 476-487, 1963. -- -- - 
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Thus, f o r  any paras i t ic  capacitance that must be charged, 

C (V) d V 

where t i s  the charging time and V and V are  the i n i t i a l  and final 

values t o  which the capacitor m u s t  be charged. In  addition, the time 

I 1 2 

taken t o  charge the various internal  regions of the t rans is tor  i s  given 

d i r e  c t  l y  by 

J 
where t2 is  the charging time, and Q. the individual charge elements of 

the t rans is tor  (e-g., base charge, col lector  storage charge, and so on). 
J 

In  a typical  si tuation, the  mutual inductance is that associated 

with point t o  p i n t  wiring over a ground plane. Thus, for the configur- 

a t ion of Figure D-5, the mutual coupling inductance i s  approximately 

given* ( fo r  long w i r e s )  by 

M = 0.2 I n  ,,/- ph/meter. 

Therefore, as  the wiring i s  brought closer t o  the ground plann, the 

mutual inductive coupling is reduced, 

For the configuration of Figure D-5, it may a lso  be s h m  tha t  the 

capacitance t o  ground is inversely proportional t o  ln (2h/a) Jm. 
Thus, there is, i n  essence, a trade off  between inductive pickup and 

charging capacitance. 

* Grover, W. 
New Jersey 

C., "Inductance Calculations", D. Van Hostrand Co., Princeton, 
( 1946 - 
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It should be noted that the magnitude of the current pickup i s  a 

f’unction of the r i s e  time of the transmitted signal. On the other hand, 

the ne t t  charge pickup i s  only given by the current excursion alone, and 

i s  thus r e l a t ive ly  independent of the r i s e  time. 

Figure D-6 shows two loops, A B C D and E F G H, both of which are  

coupled by the mutual impedance associated with the areas of the loops 

as well  as  by the self-inductance of the ground l i n e  GH, which i s  common 

t o  both. 

self-impedance by providing separate return paths f o r  both loops, as 

shown i n  Figure D.7. 

but the self-inductive pickup is  eliminated by having separate return 

paths wh’izh are e l ec t r i ca l ly  connected a t  a single point. Figure D-8 

I n  such a system, it i s  possible t o  eliminate the e f fec ts  of 

Such a system still has mutual inductive pickup, 

shows a crossection through a c i rcu i t  of this type. 

as sw::lng pa ra l l e l  wires , 
For this circui t ,  

M = 0.2 I n  (al b2/a2 bl) ph/rneter. 

!?he use of twisted pairs leads t o  an almost complete elimination 

of mutual coupling between two c i rcu i t  boards. I n  fact ,  the mutual 

coupling of such a system i s  s t r i c t l y  a function of second order effects,  

such as  non-uniformity of twisting. 

More complex schemes may also be used t o  reduce the mutual coupling 

between circui ts .  

mutual inductance that are  one decade below the f igure normally obtained 

with twisted pairs. 

Thus, the use of coaxial pairs leads t o  values of 
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Str ip l ine  techniques provide an increasingly popular a l ternat ive 

t o  the use of twisted pairs i n  modern microsystems. 

due t o  the f a c t  t h a t  they can be fabricated by photolithographic 

processes, and are  thus compatible w i t h  microcircuits i n  terms of t h e i r  

compactness and ease of fabrication. 

microstrip+, where then conductors a re  printed on one side of a f lexible  

law-loss d ie l ec t r i c  such as teflon-loaded fiberglass,  about 10 t o  20 

mils thick. The reverse side of t h i s  s t r i p  i s  coated with a conductive 

layer  and serves as a ground plane. 

conductor system take place (ideally) In the TEM mode, with essent ia l ly  

a l l  of the parer flow being confined t o  a region of the ground plane 

equal t o  approximately three times the  s t r i p  width. The crosstalk 

between two para l le l  conductors i n  a microstrip configuration is  a 

f'unctlon of the fringing radiation f i e l d  from each conductor. 

radiation f i e l d  f a l l s  

and can be fur ther  reduced by decreasing the thickness of the d ie lec t r ic  

layer. 

This is  largely 

The most popular technique i s  

Propagation of signals along such a 

This 

as the square of the spacing between conductors, 

The configuration of two para l le l  microstrip conductors on a common 

ground plane is essential* that of a microwave directional coupler, and 

has been analysed by Jones and Bolljahn*, using coupled mode theory. 

Grieg, D. D. and Engelmann, H. F., "Microstrip - A New Transmission 
Technique fo r  the Kilomegacycle Range", Proc.~IEEI v. 40, no. 12, 
p. 1644-1650 (1952). 
Jones, E. M. T. and Bolljahn, J. T., "Coupled-strip Transmission 
l i ne  F i l t e r s  and Directional Couplers" IRE cans. on Microwave Theory - and Techniques, vol. MTT-4, p. 75-81, 1m.- - 
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The work has been extended by Connol1Y)c t o  the analysis of the response 

of coupled microstrip l i nes  t o  a s tep  input pulse. 

determining the amplitude of the various signals induced i n  a coupled 

l i n e  (terminated a t  both ends i n  its character is t ic  impedance), he has 

shown that the crosstalk pulse appearing a t  the sending end is 2Ato  4 & 

i n  width. 

the receiving end is  essent ia l ly  due t o  end effects  and anisotropic 

behavior of the dielectrrc  constant. 

t h i s  signal could be as  large as that  induced a t  the sending end. 

In  addition t o  

For h i s  balanced matched-load system, the signal induced a t  

I n  a typical  (mismatched) c i rcui t ,  

The mutual impedance of coupled microstrip l ines  can be made com- 

parable t o  that of twisted pairs. 

common ground return i s  s t i l l  present i n  these structures. 

associated with t h i s  common groimd can be eliminated by resorting to  

n i c m s t r i p  techniques w i t h  separate ground returns. Unfortunately, t h i s  

leads t o  a considerable increase in the physical s ize  of the inter-  

connections. 

D.3 

However, signal pickup due t o  the 

"he coupling 

Noise Transmitted f r o m  t h e  Outpdt of the Preceeding Gate 

This noise can be generated within a logic gate because of the 

imperfect nature of c i r cu i t  elements, both active and passive. "he 

probleffi with passive elements is  due t o  the nature of the parasi t ics  

associated with them. 

-- -- - 

T h a ,  the offset  diodes used t o  obtain d-c noise 

* Coriiiolly, J. B. llCross coupling i n  H i g h  Speed Digital  Systems", IEXE - -  Trans. on Electronic Computers, v. EC-15, no. 3, p. 323-327, 196-67- 



immunity i n  DTL c i r c u i t s  results i n  the t rznsfer  of current pulses 

because of t h e i r  paras i t ic  shunt capacitance. 

The noise generated i n  active elements i s  more serious i n  nature, 

and r e su l t s  f r o m  the  l imi ta t ions  of the devices themselves, 

these sources are considered here. 

Impulse Widening. 

a very narrow noise pulse in to  a wider pulse that  may be mistaken f o r  

a signal. 

a r r ives  a t  the base of a t r a n s i s t o r ,  i t s  col lector  current i s  given by 

Some of 

Impulse widening can sometimes r e su l t  i n  converting 

Thus, if an impulse of current, representing a charge q, 

IC (t> = w q exp ( -aT t ld, 1 T e0 

where ";r is the  t r ans i s to r  gain-bandwidth product i n  radians and 

the common emitter current gain. 

waveform i s  given by qde0. 

i s  eo 

The charge associated w i t h  t h i s  c-mrent 

Thus, the  e f f ec t  of impulse widening i s  t o  

multiply t.he chzrge by th2 t rans is tor  current gain, and a l so  t o  redistri- 

bute i t s  frequency coqonents towarcs the lower end of the spectrum, 

w2thin the bandwidth of succeeding devices. 

Raise Generated i n  Circui ts  With Switched Loads. 

noise t h a t  occurs when a t rans is tor  i n  the ON condition is  suddenly 

required t o  feed addi t ional  loads. 

both Driz and T L c i r c u i t s  where the nature of the load is  nonlinear 

and may suddenly change a t  random times". 

%Iis is  one form of 

This i s  a poten t ia l  problem with 

2 

~- 

+ For example, i n  G' iz  and T 2 L designs when a l l  but one r s L e  input a re  
switched off.  
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Consider a t r ans i s to r  with a base current of . Let the col lector  

Then Figure lL9 shows thz charge d is t r ibu t ion  

IB 
c1' current i n i t i a l l y  be I 

i n  the base, w i t h  

% =*T I C l l d e o  

B = ~ s  [I* - ~ci/*eo] 

where deo is  the  common emit ter  current gain, 7' 

bandwidth product, and 7 1, the storage t i m e  constant. 

charge i n  the base i s  Q 

current be suddenly increased by I 

remains saturated. 

the base charge, it i s  clear that the  charge Q must supply it al l ,  o r  e l se  

the t r ans i s to r  w i l l  momentarily drop out of saturation, u n t i l  the  base 

current re-establishes the base charge t o  i t s  steady s t a t e  value. 

is  the reciprocal gain T 
Thu, the t o t a l  

A t  t h i s  ,afnt, l e t  the claanded col lector  
S 

+ &2. 1 
and l e t  us assume that the  t r ans i s to r  C2' 

Since t k i s  current must be instantaneously supplied by 

2 .  

I n  order f o r  the t r a n s i s t o r  to  remain i n  saturat ion 

IC2 .c, Q2 
Thus, the t o t a l  col lector  current that can be handled by t h i s  stage 

without dropping out of saturat ion i s  given by 

I n  general, 

Thus, f o r  the worst case s i tuat ion 

8 
I 
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I 
m 

Beaufoy and Sparkes* have defined an ''on-demand" current gain for 

a t r a n s i s t o r  as 

I n  typ ica l  t ransis tors ,  des = 0.5de0. 

design instead ofde0,  t h i s  noise pulse generation can be avoided. 

the problem of malfunction due t o  t h i s  cause can be d i rec t ly  avoided by 

using the  on-demand current gain of a t r ans i s to r  instead of i t s  common 

If des is  used as the basis  of 

Thu,  

emit ter  current gain as a basis  of c i r c u i t  design. 

Noise Due t o  Mistiming. 

where a signal, a f t e r  being processed i n  two chacnels of s l i gh t ly  different  

length (i.e.,  s l i g h t l y  d i f fe ren t  delay time), a r r ives  a t  two inputs t o  a 

This noise i s  often present i n  high speed systems 

gate with a s l i gh t  time displacement. 

be taken t o  minimize the resu l t ing  noise s igna l  a t  a l l  times, with careful  

a t t en t ion  being paid  t o  equalizing a l l  such delay p t h s .  

I n  asynchronous system, care m u s t  

The problem i s  considerably less  important i n  clocked n;.nchronous 

systems, where clocking i s  done a t  regular intervals.  I n  such systems, 

as long 2s the delay through any co3binational logic  path i s  l e s s  than 

one half of the clock interval,  the problem i s  corrected a t  each clocking 

point. I n  asynchronous c i rcu i t s ,  mistiming r e su l t s  i n  a pulse of anpli- 

tude equal t o  the log ica l  signal, and of width given by the -difference i n  

timing delays. 

8 
8 

* Beaufoy and J. Sparkes - Transistor Switching Perfornance Analyzed 
*--i Tnrms of Base Charge (Br i t i sh)  Telecommunications Research LTD., 
Taplow, England Technical Report, %y, 1958. 
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Consider a signal that m u s t  pass through M gates on one channel 

and N gates on the other, p r ior  t o  recombination, 

propagation delay of each gate, with a - 20% tolerance, and M i s  greater 

than N, the m a x i m u m  pulse width due to mistiming is  given by 

If <t )is the average 
Pd + 

= (1.2 M - 0.8 N) <tm> 

and the charge associated w i t h  a current pulse of amplitude I i s  given by 

Pd Q = I (1.2 M - 0.8 N ) < t  > 
Thus, the pulse noise immunity of the gate w i l l  determine the number of 

stage delajrs that can be tolerated before re-timing is  necessitated. 

Alternately, a s  i s  usually the case, a r t i f i c a l  delays are  used i n  

If t h i s  is  done, and order t o  balance the delay time of the  channels. 

the channels equalized t o  a delay of M stages, the worst case s i tua t ion  

r e s u l t s  i n  a malfunction pulse w i t h  a charge given by 

Q = 0.4 M I (t 7 coulombs, 
Pd 

where I i s  the peak current associated with the pulse, 

D.4 Logic Noise 

While t h i s  type of noise is a lso  transmitted from the output of a 

c i rcu i t ,  i t s  presence only occurs a t  the output of cer ta in  types of high 

speed, asynchronous sequential circuits.  These c i r cu i t s  a re  characterized 

by the presence of feedback loops and the i r  problems are  considered i n  

some d e t a i l  i n  the Section 4. 
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APPENDM E 

2 Terminal Characteristics of the T L Gate ---- 
2 The basic configuration of the T L gate is shown i n  Figure E-1. 

The operation of the gate is as  follows: 

When Q is  driven in to  the ON condition, the voltage a t  the point 1 
0 

assumes a value equal t o  its saturation voltags. 

t iv i ty  collector structure, with a buried layer, t h i s  voltage i s  typically 

Assuming a l o w  resis- 

0.2 volts,  

i ts emitter Am ground via  Qo, and 

drop across % can bs neglected t o  a Y i r s t  order approximation, since 

the current dram by t h i s  stage i s  much less  than that drawn by the in- 

For t h i s  condition, the base current of &1 is  driven through 

i s  i n  the ON condition. The voltage 

ver te r  t ransis tors  (Le.,  base drive current as opposed t o  collector 

current). 

ground, and this t rans is tor  is  I n  the OFF condition. 

A t  t h i s  point, the base of &2 is  s l igh t ly  over 0.2 volts  t o  

When Q is  driven into the OFT condition, the base current of &1 
0 

is  d:verted through i ts  collector to the base o r  Q,,, driving t h i s  stage 

ON. For t h i s  condition, the  f i n a l  value of the base voltage o r  Q2 

assumes a value of approximately 0.85 volts. Once again, Q i s  i n  the 

ON condition, and the voltage drop across t h i s  stage may be ignmed. 

Thus, the  collector voltage of Qo assumes a value of approximately 0.85 

vol ts  a t  t h i s  point. F r o m  tms  point onwards, Qo goes further in to  the 

O F F  condition, u n t i l  it reaches the supply voltage VB with no additional 

e f rec t  on the inverter transistor.  

L 

1 
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The s t a t e  of the t rans is tors  as  well  as the re la t ive  voltages are  

summarized i n  the following Table. 

A f ew s ignif icant  features of this  c l r c - L t  may be noted. 

a )  The multi-emitter t rans is tor  &I i s  always 011. 

b)  The d. c. k g i c  swing a t  t h e  base of &2 i s  0.2 volts  t o  c.85 volts  

a t  room temperature. 

The values of V and V vary w i t h  temperature, a s  follows: 1 2 
V 

material. 

adequate f o r  a device designed t o  operate a t  supply the voltages below 

6 vol ts) ,  the col lector  resistance a t  125' C (and hence Vl), w i l l  be 

about 125$ of i t s  value a t  25' C. 

vo l t s  a t  125O C. 

biased diode, and f a l l s  a t  the rate of 1.8 rn v/O C. 

bound of V2, obtained a t  125O C, is approximtely 0.67 volts.  

sequently, the logic  swing a t  the base of &2 i s  0.25 vol t s  t o  0.67 

vo l t s  a t  125O C. 

i s  d i rec t ly  proportional t o  the r e s i s t i v i t y  o f '  the collector body 1 
Assuming a collector r e s i s t i v i ty  of 0.1 t o  0.25~ cm (ent i re ly  

Thus, V increases t o  about 0.25 1 

V2 is  the voltage drop associated w i t h  a forward 

Thus, the lower 

Con- 

Since the difference between these levels  represents 

the discrimination of the inverter, ( t o  d.c. s ignal  levels  changes), we 

note tha t  the worst case d.c. noise margin occurs a t  elevated temper- 

atures. 
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The input charac te r i s t ic  of the gate may now be assesed. Figure E-2 

shows the ac tua l  gate used, w i t h  the input voltage V as the variable. 1 
I n i t i a l l y ,  Q is  i n  the ON condition, and V i s  approximately 0.2 volts.  

0 1 
Thus, I1 = - (v* - Vm1 - 0.2)/R1 where VEBl i s  the forward drop across the 

emitter-base diode €$. 

I -4.2 m a. 

For the actual values quoted i n  Figure E-2, 

1 

A s  V1 i s  increased, the V-I character is t ic  moves along a s t r a igh t  

l i n e  w i t h  a slope of R u n t i l  the onset of conduction of Q ( a t  about 1 2 

0.6 vol t s ) .  A t  t h i s  point, enters i ts  ac t ive  region, and the input 

charac te r i s t ic  has a slope given by the sum of the col lector  body 

resistance of $1 and the input impedance of Q 

t r ans i s to r  becomes saturated. 

Shortly thereaf ter ,  
2' 

Q2 

I n  saturation, the input impedance of Q i s  given by 2 

R i n  = r' b2 + (kT/q%J 

where r' 

LE2 i s  i t s  emitter current. 

region i s  thus given by the sum of the col lector  saturat ion resistance of the 

is  the base spreading resistance of the inverter  t rans is tor ,  and b2 

The slope of the input character is t ic  during th i s  

coupling t ransis tor ,  the base spreading resis tance of the inverter,  and the 

forward impedance of the emitter-base diode of the inverter  t rans is tor .  

Since I 

usual ly  negligible. 

is large (about 15-20 ma f o r  t h i s  c i r cu i t ) ,  th i s  l a s t  term i s  
E2 

This slope is  maintained u n t i l  the current supplied by V is  a l l  diverted 

t o  the base of Q2, a t  which point the input impedance rapidly increases t o  that of 

a reverse biased emitter-base diode. A t  th i s  point, the input current of 

A 
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the gate i s  given by 

I =  1 

where I is the base current 

its inverse current gain. I n  
a 

designed t o  keep t h i s  inverse 

l i m i t s  the fan-in and fan-out 

of the coupling t ransis tor ,  a n d 4  is  

practice, the coupling t rans is tor  must be 

current gain extremely small, since it 

capabi l i t ies  of the gate. 

Figure E-3 shows the input character is t ic  obtained by the approx- 

imate analysis. 

s ignal  model of Ebers and Moll. 

f u l  purpose i n  our study. 

A more detailed analysis can be made using the large 

However, t h i s  analysis serves no use- 

I n  Figure E-3, the various points a re  noted as follows: 

P1 - Stage Q is  saturated, and Q is  OFF. 

P2 - Qo almost completely OFF, Q entering its active region. 

P4 - Qo almost completely OFF, Q2 hard i n  saturation. 

0 2 

2 

- Q completely OFF. p5 0 

The location of the point P when &2 i s  a t  the edge of saturation, 3' 
i s  somewhat more d i f f i c u l t  t o  determine, and varies with the fan-out of 

the stage. 

base current required t o  drive th i s  stage in to  saturation i s  given by 

(ITB - 0.2)/R2v+iFor the component values given, Ics2 = 11 ma. when the 

stage is  unloaded. If Q2 is  loaded with a fan-out of 4 (as is typical  

f o r  the 8 L  gate), then ICs* = (11 + 4 x 4.2) = 27.8 ma. Thus, a base 

current of approximately 0.56 ma. i s  required t o  bring Q 

of saturation, i.e., t o  arr ive a t  P 

Assuming a common emitter current gain of 5G f o r  Q the 
2' 

t o  the edge 2 

3' 
Figure E-4 shows a measured input character is t ic  obtained f o r  the 

2 T L gate designed on t h i s  program. From t h i s  character is t ic  the following 
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points may be noted. 

a. r’ + r = 40 ohms. b i  cs2 

b. 

c. 

d. The common emit ter  inverse gain of the coupling t r ans i s to r  i s  seen 

Q2 enters  i t s  act ive region a t  an input voltage of 0.6 vol ts .  

&2 is hard i n  saturat ion a t  a n  input voltage of 0.8 vol ts .  

t o  be 0.12. While this i s  quite high, it must be remembered that 

the devices used i n  these experiments were not spec i f ica l ly  mde f o r  

this application. 

“he t r ans fe r  charac te r i s t ic  of t h i s  gate may be readi ly  sketched 

w i t h  the a-id of Figure E-3. 

various b r a k p i n t s ,  one obtains (see Figure E-5) 

Rere, using the same terminology f o r  the 

p1 : v = 0.2 volts,  v = 1.5 vol t s  
1 3 

1 3 p2 : v = 0.6 volts,  v = 1.5 volts 

: v = 0.85 volts, v = 0.2 vo l t s  p4 1 3 
P v = 1.5 volts, v = 0.2 vol t s  

5 -  1 3 
A s  before, the locat ion of P 

Since, hcwever, only 0.56 ma. has to  be fed t o  the base of &2, the 

voltage V 

occurs. 

is a function of stage gain and loading. 3 

i s  normally somewhere between 0.6 and 0.7 when t h i s  p i n t  1 

I n  view of the f a c t  t h a t  the quiescent p i n t s  of t h i s  c i r c u i t  

are a t  P1 and P 

posi t ive (P  - P,), and 0.7 v o l t s  negative (I? 

i s  OFF, an input l e v e l  shilft of 0-4 v o l t s  ( i n  the posit ive direct ion)  can 

the d.c. margin to  noise f o r  t h i s  gate is 0.4 vo l t s  5’ 
- P4). Thus, -if the gate 

1 5 

be tolerated.  On the other  hand, when the gate i s  ON, an input l eve l  

s h i f t  of 0.7 vo l t s  ( i n  the  negative d i rec t ion)  can be allowed. 

voltage noise margin of the gate i s  thus 0.4 vol ts ,  since th i s  represents 

the more pessimistic value. 

The d.c. 
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The effect of elevated temperature is to shift points P2, P3 and 

P and P laterally, to the left. Thus, the doc. noise immunity to 

positive level changes is somewhat lessened, while the noise immunity 

to negative going level shifts is relatively unchanged. 

4 5 

Since the 

threshold voltage of the emitter-base..diode of &2 is reduced by about 
0.18 volts at I 2 5 O  C, the effective d.c. noise margin is also lessened 

by this value. Thus, the d.c. noise margin is reduced to 0.22 volts at 

I 2 5 O  c. 

It is w o r t h  noting that a more optimistic value of noise margin can 

be quoted for this gate, by using some other point on the transfer char- 

acteristic as a reference point. 

measured down to, say, 50% of the transition) 

(For example, noise margin may be 

This choice w i l l  not, 

however, alter the situation drastically. 

Figure E-6 shows the measured transfer characteristic for the 'J?L 

gate. For this measurement the multipIe-emTtter coupling transistor 

was replaced by a planar epitaxial unit having a single emitter, 

is worth noting that the characteristic in the transition region 

between P2 and P4 is somewhat curved. 

input characteristic of the inverter diode is exponential, and not a 

It 

This is due to the fact that the 

threshold as assumed in the analysis. 
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APPENDIX F 

Switching Characteristics of a '$L Gate 

2 The switching character is t ics  of the T L gate may now be determined. 

For simplicity, the c i r cu i t  w i l l  be analysed f o r  a fan  i n  / fan out of 

unity, since OUT prime in t e re s t  is i n  the developnent of a method f o r  

the characterization of th i s  gate t o  noise. The manner i n  which the 

noise immunity of the gate i s  affected by other terminal loadings can 

be readi ly  computed, once the gate has been characterized f o r  any one 

s e t  of conditions. 

The switching properties may be determined by studying the nature 

of the various parts of the switching cycle, as they occur. A t  the  

outset  it should be remembered that &1 i s  ON a t  a l l  times, with i t s  

base current changing only s l igh t ly  during different  p r t s  of the 

switching cycle. Thus, the base charge f o r  t h i s  t rans is tor  can be 

conveniently considered as constant, even though it does undergo 

redis t r ibut ion (which occurs a t  a near-instantaneous rate) during 

Ql the switching cycle. Consequently, only the paras i t ic  elements of 

need be considered i n  the analysis. 

The switching properties are  computed f o r  the application of an 

i dea l  input signal V 

with the idealized output waveform V 

Turn-on &lay 

t o  the gate, as sham i n  Figure F-1 together 1 

3' 

z Figure F-2 shows the c i r cu i t  for  the basic T L gate, w i t h  i ts  

t ransfer  characterist ic.  For t h i s  gate, the turn-on delay occurs as 

the operating point moves from P 

voltages a t  the base and collector of &1 may be l is ted as follows f o r  

t o  P2. Over this  transit ion,  the 1 
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+ 
Voltages a t  

2’ 2 

1.05 v 0.2 v 

1.2 v 0.6 v 
9 

phase of the turn  on t ransient  are as follows: 

the collector t ransi t ion capacitance of Q1, is  subjected t o  a )  ‘TC1’ 

l i t t l e  voltage change, and hence requires a small amount of charge 

which may 

the  

a voltage 

b, ccsl, 

c )  cm2, the 

be neglected. 

collector t o  substrate capacitance of 9, is  subjected to 

change t o  0.4 v o l t s .  

emitter t rans i t ion  capacitance of Q2, is  subjected t o  a 

voltage change of 0.4 volts. 

Thus, the t o t a l  charge t h a t  must be delivered during the turn on 

delay phase, P t o  P2, is given by 0.4 (C + Cm2) picocoulombs, 1 cs1 
where the capacitance values are  given i n  picofarads. 

It should be stressed that the capacitance values must be adjusted 

f o r  a fan-in i n  excess of unity. However, since t h i s  only serves t o  

increase the capacitance, it w i l l  r e su l t  i n  a more optimistic value f o r  

the resul t ing pulse noise immunity. A s  a consequence, a fan-in of 

unity Will be used. 

If I i s  the current used t o  charge these capacitances, then 
et, 

If the base current i s  used i n  th i s  expression, we obtain t the time 1’ 
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taken t o  bring &r from the O F F  regi 

This t i m e  i s  the turn-on delay time 

R i s e  Time 

n t o  the edge of the active reg 

of the transistor,  

.on. 

Once the inverter t rans is tor  is brought t o  the edge of the active 

region, any additional charge contributes t o  the rise t i m e .  It can be 

shm* that the collector current during t h i s  phase is  given by 

where 

and C i s  the t o t a l  capacitance a t  its collector. This term includes 

the collector t ransi t ion capacitance and the collector t o  substrate cap- 

i s  the reciprocal of the gain-bandwidth product of the inverter, T 

2 

acitance of the inverter stage, as w e l l  as the capacitive loading effects 

due t o  wiring and fan-out. 

Since the stage i s  saturated a t  currents well below dE 5, the 

approximate form of t h i s  equation is useful,' as follows: 

IC 

cs2 

IB t/( rT + R2 C2) 

Writing I 

50% of t h i s  value i s  given by 

as the saturation current of &2, the time taken t o  a t t a i n  

t r (0.5) = 0.5 ICs2 (TT + R2 ' 2 )  / 'B 

Storage Time 

L e t  7 be the charge storage time constant f o r  Q2. Once the inverter 
S 

t rans is tor  has reached the edge of saturation, the charge build up i n  t h i s  

device i s  given by 

* Phill ips,  A. B. "Transistor Engineering, Chapter 16, McGraw H i l l  Book Co., 
New York, 1962. 
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Thus, the t r ans i s to r  is  f u l l y  saturated ( t o  i t s  95$ value) i n  a time 

equal t o  3 f s .  I f  the 

greater  than 3 7' and 
S' 

given by 
* 

input s i g n a l  is maintained fo r  a time that i s  

removed, the storage time may be shown t o  be 

ts = T S  I n  

Here, I is the reverse current t ha t  flows during t h i s  phase, and i s  

shown i n  Figure F-3. While t h i s  current flows, the emitter base 

voltage of Q is  0.85 vol t s ,  while the saturat ion voltage of Q i s  0.2 volts.  

Hence, 

2 0 

+ r ) amps. csl I = 0.65/(r' + r b2 cso 

&2, and r and r where rG2 is the base spreading resistance of 

a re  the  col lector  resistances of Qo and &1 respectively. 

F a l l  Time 

cs l  cso 

The analysis of f a l l  time is  complicated by the f a c t  that the 

emitter-base diode i s  shorted t o  ground through a small resistance R, 

where 

R = r '  + r  + r  b2 cso csl 

For t h i s  case, it may be shown**that the f a l l  time, t o  the 503 point, 

i s  given approximately by 

tf (0 .5)  2%. = - R (TT + R; c2) 
kT exp ( qVm/kTj 

1 * D i d ,  p. 54. 

*%iney, A. -- IEEE Trans. -- on Elec. Computers, v. EC-13, p. 616-620, 1964. 

I 
I 
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Here, R’ ,is the parallel- connection of the load resistance of Q 

well as the base resistances of the various multiple-emitter coupling 

transistors to which the gate is connected. 

collector transition capacitance of &2’ the collector-to-substrate 

capacitance of &2’ and the capacitance loading effects due to wiring 

and fan out. 

as 2 2 

A l s o ,  C2 is the sum of the 
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APPENDIX G 

Calculation f o r  the Pulse Noise Immunity of a 8 L  Gate 

Figure G-1 shows the block diagram of a 8 L  gate, together with a 

malfunction indicator consisting of two ident ical  cross-coupled gates. 

A high speed $L c i r c u i t  arrangement, used i n  the experiments t o  simu- 

late the block diagram, is  shown i n  Figure G2. For simplicity, the 

coupling t rans is tors  w e r e  removed i n  the t e s t  version, However, their  

e f f ec t  can be readi ly  included i n  the analysis, as  shown, A l l  the 

t rans is tors  used i n  th i s  c i r cu i t  were type 2N709. 

are  heavily gold doped (as a re  a l l  devices used i n  high speed saturated 

Since these devices 

logic  gates), the charge stored i n  the  col lector  may be neglected i n  

the analysis. 

A rectangular current pulse, of amplitude I and w i d t h  7,  is  applied 

t o  the input of the c i r c u i t  of Figure G2. It i s  required t o  determine 

the current amplitude a t  which t rans is tor  Q i s  turned OFF, resul t ing i n  

an indication of malfunction. Alternately, the problem may be s ta ted  i n  

the following terms: Given a rectangular pulse of amplitude I, w h a t  i s  

i t s  minimum time duration i n  order that Q be turned OFF? This problem 

may be solved by considering i n  sequence the various aspects of c i rcu i t  

4 

4 

operation as follows: 

a )  

the sum of the saturation voltage of &1 and the voltage drop across R. 

If the gate were fed from a preceeding gate, the voltage drop across R 

With &2 i n  the OFJ? condition, its emitter-base voltage i s  essent ia l ly  

would be replaced by the saturation voltage of i ts  inverter t ransis tor .  
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During the turn on delay time interval  td, the voltage a t  the base 

I n  of Q2 i s  raised u n t i l  t h i s  t rans is tor  i s  on the edge of conduction. 

this interval,  the  various capacitances between the base of Q and ground 

must be charged. 

of &2) Ccsl- the collector-substrate capacitance of €$) and any stray 

wiring capacitances C that may be present a t  t h i s  point. 

2 
These include Ca2- the emitter t rans i t ion  capacitance 

Since the 

charging current during t h i s  phase is  5) we obtain 

where dVm2 is  the emitter-base voltage excursion between the O F F  con- 

d i t i on  and the edge of saturation. 

typ ica l ly  0.2 and 0.6 vo l t s  respectively.) Since the base resistance 

RB is w e l l  i n  excess of the collector saturation resistance of &1 and 

the base spreading resistance of &2, a constAnt current source may be 

assumed. 

( A t  room temperature, these are 

b)  

of saturation. 

and we may write 

The t r ans i s to r  Q is  brought f r o m  the edge of conduction to the edge 2 

During this r i s e  time, tr, Q2 i s  i n  i t s  active region, 

w h e r e T ,  is the reciprocal gain-bandwidth product of the inverter averaged 

over the rise t i m e ,  RW and Cc2 a r e  the effect ive values of i ts  load re- 

sistance and capacitance respectively. 

I i s  the input current supplied t o  its base. 

Ic2 is the col lector  current, and 

Solving, - 
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If the t r ans i s to r  saturates a t  IS d. I, we may write e02 

During this r i s e  time interval, Q is  OFF, and thus a l l  of the 3 
current i n  the load resistor is supplied t o  &2. 
c )  

and aids i n  removing i ts  stored charge; 

be removed before the col lector  voltage of Q4 s t a r t s  t o  rise from i ts  ON 

Once &2 is saturated, it acts as en effect ive short c i r cu i t  on Q4, 

A I L  of this stored charge m u s t  

value. During th i s  interval,  the effective loop voltage aiding the re- 

where V i s  the m o v a l  of stored charge is Va(sAr)4 - 'CE(SAT)~~ BE(SAT)4 
base voltage of Q4 when it is saturated, and V i s  the collector 

voltage of 62 i n  i t s  satumted condition. 
CE( SAT)2 

For typ ica l  high speed trans- 

istors having a buried layer under the collector, Vm(sAr)4 is  about 0.85 

t o  0.9 volts,  w h i l e  V is about 0.15 t o  0.3 volts. CE(SAT)2 
I n  the event cs2' The only resistance i n  the loop path is  rsJ4 and r 

that the malf'unction c i r cu i t  i s  synthesized f r o m  a wir of complete logic 

gates, the saturat ion resistance of a multi-emitter coupling t rans is tor  

must a l so  be included i n  th i s  loop. 

Thus, loop current, IL, (see Figure G2)  is given by 

The stored charge i n  Q4 is given by 

and '(SAT)& where 7,  is  the charge storage time constant of Q4, and I& 
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are the base and col lector  currents respectively when Q i s  saturated. 

Then, ts, the time taken t o  dissipate the stored charge i n  Q4, i s  
4 

given by 

t - T S  54 %4 + rcs2) 
s -  

'BE(SAT)4 - 'CE(SAT)2 ( 3 )  

d)  Once the stored charge i n  Q4 is dissigated, its collector voltage 

begins t o  r i s e  u n t i l  Q reaches the edge of the active region. The com- 

putation of t h i s  t i m e  involves the solution of a nonlinear d i f fe ren t ia l  
3 

equation. 

through &2, t h i s  time can be ignored. 

e )  enters  its active region, the feedback action of the flip- 

f l o p  is  i n i t i a t e d  and a permanent indication of malfunction i s  obtained. 

However, since the base of Q4.is essent ia l ly  shorted t o  ground 

Once Q 3 

The precise point a t  which the balance of the f l i p f l o p  i s  a l te red  is  

open t o  question. However, t h i s  time can be conveniently ignored, as  

i s  noted experimentally by the fac t  that the malfunction indication i s  

extremely sensi t ive t o  any input current change a t  th i s  p i n t .  (In the 

experimental study, it was not possible t o  hold the c i r cu i t  on the verge 

of malfunction.) 

If a l l  these events occur i n  sequence, the minimum pulse width re- 

quired i s  given by td + tr + ts. 

l a y  in te rva l  and the r i s e  t i m e  in terval  of &2 do indeed occur i n  sequence. 

On the other hand, some of the charge i n  Qk begins t o  be dissipated the 

moment -the col lector  voltage of &2 becomes equal t o  V 

It i s  eas i ly  seen that the turn-on de- 

BE( SAT)&' 
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The fract ion of the rise time during which t h i s  OCCUI'S i s  given by 

'B[SAT)k - 'cE(SAT)2 

'B - 'CE(SAT)2 
tl = tr 

During t h i s  t i m e  interval,  the loop voltage varies from zero t o  a 

maximum of 

'BE(SAT)k - 'CE(SAT)2 
To a first approximation, t h i s  variation may be assumed t o  occur l inear ly  

during the time interval.  

The effect ive resistance i n  the loop i s  

rlJ4 + RL 
Consequently, during t h i s  interval,  the  loop current may be assumed t o  r i s e  

l inear ly  from zero t o  a value given by 

il = 'JE(SAT)4 - 'CE(sAT)2 
5 4  + RL 

Integrating t h i s  current over the'time tl results i n  the charge dq that 

is  d i s s i p t e d  during the  risetime interval. Thus, 

The base stored charge T s  Q is  reduced by dq during t h i s  part of the 

risetime interval. 

It has been shown previously (see P. 60) that the time in te rva l  ts 

required t o  dissipate the stored charge i n  Q is  given by 4 

%4 + rCS2 t = Stored Charge 
'BE (SAT)& -'CE (SAT)2 S 

Consequently, if we oonsider the dissipation of stored charge a f t e r  the 

t rans is tor  r i s e  time interval,  the time f o r  t h i s  event t o  occur i s  t - dts, S 
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'BE(SAT)4 - 'CX(SA'I')2] [ + 

rb4 + RL (4) 'B - vCX(SAT)2 

1 
s 2 r  d t  = -  t 

It i s  seen tha t  there i s  an approximately imrerse re lat ion between d t  and 

VB, if the term Vm(sA'p)2 i s  ignored. 
S 

The tern d t  may be ignored i n  medium speed circui ts ,  since these 
S 

normally operate a t  large values of col lector  supply voltage. 

the case i n  high speed circui ts ,  however, where very low values of supply 

This i s  not 

voltage, and correspondingly large values of supply current, a re  common. 

Thus, the t o t a l  time that the pulse -must be maintained t o  cause m a l -  

function is  given by 

S 
+ tr + ts - at d 7 = t  

O f  these t e r n ,  both td and ts a re  only functions of the power supply voltage 

and of the c i rcu i t ,  while t 

tude. Thus, the noise pulse width takes the form of 

and d t  a r e  functions of the noise current ampli- r S 

7' = K/I i- yo 

where 1, i s  a constant f o r  the circui t .  

These computations have been carried out f o r  L e  hi& speed gate of 

Figwe G-2, using 2M7O9 t ransis tors .  

t h i s  experiment, the value of the collector-to-substrate capacitance of the 

coupling t r ans i s to r  has been ignored. 

Since discrete components were used f o r  

The various c i r cu i t  and parameter values used f o r  these devices is given i n  

Table 1. 

The base spreading resistance is  unfortunately not specified and was thus 

obtained from the experimentally derived input impedance curve shown i n  

Figure E-4. 

Most of these w e r e  taken off the manufacturers specification sheet. 

For this  case, 

7' = (24/I + 1.08) nsecs. 

where I i s  i n  milliamperes. 
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Figure G-3 shows a plot  of I as a function o f 7 ,  obtained experi- 

mentally on the c i r cu i t  of Figure G2. 

t r ans i s to r  was monitored with the aid of a current transformer and a 

sampling oscilloscope, and was seen to  be nearly rectangular f o r  a l l  

values of pulse width above 3.5 nsces. 

correlat ion between the calculated and experimental values. 

The input current t o  the coupling 

It is seen tha t  there is  close 

The c i r cu i t  was  retested, using a slower speed t rans is tor  (2N706) 

in  place of the 2pJ7O9. 

i n  Table 1. 

For t h i s  version, 

Parameter values f o r  t h i s  c i rcu i t  are  a lso given 

Figure G-4 shows the experimental and calculated values. 

7 = (197/1 + 2.55) nsecs. 

Again, close correlation i s  seen between theory and experiment. 

A final comment i s  i n  order concerning the nature of these curves. 

A t  large values of 7 ,  the theoret ical  expressions indicate tha t  the 

current approaches zero. 

a f i n i t e  value. 

Clearly, this is  not true, since it must reach 

With microcircuits, complete logic blocks a re  interconnected i n  the 

manner of Tigure G-1. The c i r cu i t  arrangement f o r  this  connection i s  

shown i n  Figure G5. The relat ions governing the noise immunity of t h i s  

gate a re  very s i m i l a r  t o  those of the c i r cu i t  of Figure G-2, w i t h  minor 

modifications. Thus, 

dvBE2 + ccsl + c >  - 
r, td - 
u 

as  before. Also, 

Is (% + RL2 c >  c2 
t =  
r I 
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as before, except that Cc2 = CTc2 + cm6 f o r  t h i s  configuration. 

The storage time i s  given by 

s 'EA (%4 + + rcs6) t =  
'BE(SAT)k - 'CE(SAT)2 - 'CE(SAT)6 

where I& i s  supplied via % and not R 

Finally, 

a s  i n  the previous c i rcu i t .  L 

1 'BE(SAT)4 'CE(SAT)2 d t  = - t  
s 2 r  

Thus, the primary change is t h a t  due t o  the inclusion of the voltage 

drop across &6 and t o  i t s  parasit ic se r i e s  resistance. 



Para meter 

vm(0m!2 

'EE( SAT)& 

vCE(sAr)2 

vB 

cm2 

cTc2 

'TC3 

ccsl 

C 

cs2 ri4 + r 

eo4 

f T  

7, 

T S  

RL2 

*B 

Values 
f o r  

m o 9  

0.15 v 

0.5 v 

0.9 v 

0.15 v 

1.5 v 

4 pf. 

4 pf. 

2.5 Pf. 

2.5 pf. 

0 pf. 

0 pf. 

40 ohms 

Values 
f o r  

2~706 

0.3 v 

0.6 v 

0.9 v 

0.3 v 

1.5 v 

8 pf. 

8 pf. 

5 Pf. 

5 Pf. 

0 pf. 

0 pf. 

15 ohms 

Remarks 

In  the O F F  condition 

A t  the edge of saturat ion 

In  saturated condition 

See Figure E 2  

For a co l lec tor  current 
of about 10 ma. 

For a col lector  current 
of about 10 ma. 

For t h i s  c i r c u i t  

For t h i s  c i r c u i t  

Measured, as i n  Figure E-4 

50 20 

500 m c  50 mcs Averaged over the  rise t i m e  

2 nsec 20 nsec 

3 nsec 16 nsec 

30 13 Figure G-2 

4.7 m a  4.35 ma Figure G-2 (during td phase) 



Parameter 

IB4 

S 
I 

td 

S 
t 

tr 

S 
d t  

7' 

TABLF: 1 (continued) 

Values Values 
f o r  for 

m709 2~706 Remarks 

To drive Q4 in to  saturat ion 

11.25 

0.38 nsec 

Since i n i t i a l l y  Q i s  OFF 
3 

10 ma 

0.55 nsec Equation 1 

0.705 nsec 2.0 nsec Equation 3 

25.811 225.211 Equation 2 I i n  ma 

.074 t r .02a tr 'Equation 4 

24/I + 1-08 19711 + 2.55 I n  nsecs. 
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APPENDIX H 

Osci l la t ion Hazards i n  Asynchronous Sequential Circuits 

Introduction 

The invest igat ion and results described here originated with the 

observation that with very fast nor gates having very l o w  output c a p -  

citance,  the c i r c u i t  of Figure H - l w i l l  o s c i l l a t e  when the s ignals  a t  

both A and B of Figure H-1  a r e  simultaneously changed f r o m  1 t o  0. 

This behavior is  a property of a model i n  which each gate i s  replaced 

by an instantaneous calculat ion of the  "nor" function of i t s  inputs 

followed by a delay. 

it i s  readi ly  apparent that i f  the no r  gates a re  modelled as  idea l  logi-  

c a l  devices followed by pure delays that osc i l l a t ion  w i l l  r e su l t  when 

the s ignals  a t  A and B a re  simultaneously changed from 1 t o  0. 

model does not accurately represent a p rac t i ca l  nor gate. 

the extent t h a t  the r i s e  time of the gate plus output wiring is m a l l  

compared t o  the delay of the same configuration, the model becomes in- 

creasingly valid.  Alternatively,  t h e  t ransfer  function of the two gates 

with the output wire must have greater than unity gain a t  360 phase s h i f t .  

If the c i r cu i t  i s  redrawn a s  shown i n  Figure H-2, 

Such a 

However, t o  

If the t r ans fe r  functions of the gates with t h e i r  output wires a re  

known, the poss ib i l i t y  of such osc i l l a t ion  would be indicated by the 

Nyquist cr i ter ion.  If the  devices themselves have no phase s h i f t  t h i s  

would require greater  than uni ty  loop gain a t  a frequency f o r  which the 

interconnecting w i r e s  a r e  a wavelength long. 
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I n  the course of fur ther  work w i t h  the same c i r cu i t s  a very fast  

counter w a s  required t o  measure the duration of a pulse whose width was 

determined by radar range. It was discovered t h a t  th? readout c i r c u i t  

f o r  such a counter could not be designed t o  avoid the poss ib i l i t y  of 

o s c i l l a t i o n  f o r  a ce r t a in  r e l a t ion  between the t i m e  of the read-out 

s igna l  and the  t r ans i t i ons  of the clock s ignal  driving the counter. 

Af te r  some investigation it was  found that many standard synchronizing 

c i r c u i t s  suffered f r o m  t h i s  diff icul ty .  

An iner t ia l  delay of length D has the property that no input pulse 

of length l e s s  than D appears a t  the output of the i n e r t i a l  delay and 

any input pulse of length greater  than D appears a t  the output delayed 

by D. 

i s  shown i n  Figure H-3. 

A c i r c u i t  which has t h i s  property was described by Unger (1) and 

The device label led M i n  Figure H-3 is a "majority" gate. Such a 

gate produces an output of one if and only if two or more of i t s  inputs 

a r e  one. 

The log ica l  function computed by the majority gate of Figure H-3 

can a l so  be computed using nor logic  a s  shown i n  Figure H-4. 

It is readi ly  seen t h a t  i f  the output Y is ident i f ied  w i t h  the input 

C a s  is required f o r  the rea l iza t ion  of the  i n e r t i a l  delay of Figure H-3 

and if each nor gate has a small pure delay then the c i r c u i t  can be caused 

t o  o s c i l l a t e  i n  a va r i e ty  of ways. For example, the c i r c u i t  of Figure H-3 

with the-majority logic  of Figure H-4 i s  stable i f  the output of the 

majority log ic  is zero (and hence C is  zero) while A = 0 and B = 1. If 

A changes t o  1 one gate delay before B changes t o  zero, the closed loop 
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w i l l  o sc i l l a t e .  

of the i n e r t i a l  delay, the c i r c u i t  of Figure H-3 w i t h  the  majority log ic  

of Figure H-4 cannot be regarded a s  r e l i a b l e  under asynchronous operation. 

Since t h i s  t rans i t ion  could occur i n  normal operation 

It was  observed t h a t  an idea l  i n e r t i a l  delay of more than one gate 

delay inser ted  i n  s e r i e s  w i t h  one of the nor gate outputs of Figure H-1  

w o u l d  prevent the o s c i l l a t i o n  of that  c i r cu i t .  It should be observed 

tha t  two iden t i ca l  i n e r t i a l  delays in  series w i t h  both nor gate outputs 

w i l l  not prevent osc i l la t ion .  

asynchronous c i r c u i t s  can not be constructed from l og ica l  devices having 

pure delays and pure delays alone. 

component having low pass f i l t e r i n g  propert ies  or  properties s imilar  t o  

an i n e r t i a l  delay i s  necessary f o r  the reliable operation of such asyn- 

chronous c i r cu i t s .  This does not seem t o  be generally recognized a s  the 

use of capacitors is  frequent ly  forbidden i n  the use of high speed gates 

without the provision of any a l te rna t ive  device which can function i n  a 

manner s imilar  t o  an i n e r t i a l  delay. 

Resul ts  

It was therefore  conjectured t h a t  r e l i ab le  

- 
I n  addi t ion t o  such components, a 

The theorems proved i n  t h i s  paper a re  per t inent  t o  t h i s  question. 

The theorems a re  not completely general i n  tha t  a flow tab les  are assumed 

f o r  which the t r ans i t i on  between two stable s t a t e s  involves a t  most one 

t rans ien t .  

beyond t h i s  case. 

No e f f o r t  has been made a s  ye t  t o  generalize the r e su l t s  
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The concept of a c r i t i c a l  input race  i s  c e n t r a l  t o  t h e  investigation. 

An asynchronous flow t a b l e  i s  s a i d  t o  contain a c r i t i c a l  input race  if 

t h e r e  is a pair of input  l i n e s  and values of t he  s igna l s  on these l i n e s  

and an i n t e r n a l  s t a t e  which is s t a b l e  f o r  t h e  pair of s igna l  values with 

the  property that t h e  s t a b l e  s t a t e  r e s u l t i n g  from a change of both values 

depends upon t h e  order of the change. 

Under these  assumptions we have 

Theorem 1 If a c r i t i c a l  race e x i s t s  i n  an asynchronous flow t ab le ,  then 

t h e r e  i s  no secondary assignment such t h a t  the  combinational l og ic  which 

computes t h e  next state is  free from func t iona l  hazards. 

The proof of t h i s  theorem i s  given i n  the  Appendix I. The d e f i n i t i o n  

of a func t iona l  hazard i s  due t o  Eichelberger (2)  and i s  discussed i n  the  

re ference  given. Roughly, a Boolean func t ion  wi th  a func t iona l  hazard 

cannot be mechanized i n  such a way as  t o  insure  no undesirable t r a n s i e n t s  

i n  t h e  output of the  mechanization when c e r t a i n  inputs change simultan- 

eo us l y  . 
O f  course, such t r a n s i e n t s  could be eliminated by placing an i d e a l  

i n e r t i a l  delay i n  s e r i e s  with each output of t he  combinational l og ic  i f  

the  magnitude of the  delay w e r e  greater than the  d i f fe rence  between the  

maximum and minimum delay through t h e  log ic .  

For t he  proof of Theorem 2 it i s  assumed t h a t  a l l  t r a n s i t i o n s  

between s t a b l e  s t a t e s  involve the  change of only a s i n g l e  secondary 

va r i ab le .  That such secondary assignments a r e  always poss ib le  has been 

shown by Huffman (3).  

tedious.  

The argument can be generalized, bu t  becomes very 

'Pne p r inc ipa l  d i f f i c u l t y  is  c l e a r  from the  argument i n  the  
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l imited context and such assignments a re  usually used i n  practice. 

w i l l  c a l l  such assignments Huffman secondary assignments. 

Theorem 2 If a n  asynchronous c i rcu i t  w i t h  a Huffman secondary assignment 

contains a c r i t i c a l  input race then even i f  the combinational logic  which 

computes the next state is hazard free, appropriate input change timing 

may cause osc i l l a t ion  for cer ta in  combinations of s t r ay  delay i n  the com- 

binat ional  logic  unless suf f ic ien t ly  large i n e r t i a l  delays a re  placed i n  

We 

the feedback loops. A suf f ic ien t  condition f o r  s t a b i l i t y  is  that such 

delays be larger  than the longest logic delay. 

The proof of t h i s  theorem is  contained i n  the Appendix I. The proof 

exhibi ts  the range of input change timing which yields unreliable results 

and specif ies  the magnitude of the i n e r t i a l  delays required t o  insure 

that  such un re l i ab i l i t y  does not occur. 

The theorems can of course be applied t o  the construction of the 

i n e r t i a l  delay i t s e l f .  If such a delay i s  constructed from logica l  

devices and a pure delay i n  the form shown i n  Figure H-5 then it is  

readi ly  seen tha t  the flow table  fo r  the  asynchronous c i r cu i t  contains 

a c r i t i c a l  input race and could hence only be re l iab ly  designed w i t h  

the a i d  of an i n e r t i a l  delay. We conclude, therefore, tha t  under the 

assumptions made here t h a t  a complete s e t  of devices f o r  the design of 

r e l i ab le  asynchronous c i r c u i t s  must include some device which w i l l  serve 

the function of an i n e r t i a l  delay. A capacitor w i l l  serve since it can 

j f u l f i l l - t h e  function of a low pass f i l t e r  bxt only a t  the expense of 

deter iorat ion of output r i s e  times. 
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APPENDIX I 

Proofs on Theorems on Hazards i n  Asynchronous Sequential Circuits 

Proof on Theorem 1 

The combinational logic  of an asynchronous sequelitial switching 

c i r c u i t  must compute a s e t  of n Boolean functions defined by a table  

which is  formed by subs t i tu t ing  a sequence of n binary d ig i t s  f o r  each 

s t a t e  of i t s  f l o w  table.  A m r t i c u l a r  choice of such a sequence for 

each s t a t e  is cal led a secondary assignment. The portion of such a 

table corresponding t o  the most complex form of c r i t i c a l  input race 

i s  shown i n  Figure 1-1. 

We w i l l  be concerned w i t h  the values of the n Boolean functions 

defined by such a tab le  on a subset of the t o t a l  s t a t e s  where a t o t a l  

state i s  defined as a pa i r  consisting of an input combination and the 

secondary assignment f o r  an in te rna l  s ta te .  For example, the pa i r  

a N l O  defines a t o t a l  s ta te ,  where "a" i s  an abbreviation f o r  the 

sequence a a 

of values for a l l  inputs except those involved i n  the c r i t i c a l  input 

race which a r e  specified by the f i n a l  ordered pair of binary d i g i t s .  

a of binary d ig i t s  and N denotes a f ixed combination 1 2  * - *  n 

To each pa i r  of t o t a l  s t a t e s  there corresponds a subset of t o t a l  

s t a t e s  cal led a subcube of which the pair a re  diagonally opposite 

ver t ices .  This subset is  defined as follows. 

Definition: Given two a rb i t r a ry  t o t a l  s t a t e s ,  the s e t  of t o t a l  s t a t e s  

which have the same binary d ig i t s  as  the two given t o t a l  s t a t e s  i n  the 

posit ions where the  binary d ig i t s  of the two given s t a t e s  a re  identical ,  
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is cal led the subcube determined by the  pair of given t o t a l  states. This 

subcube w i l l  be denoted by (x,y) where x and y a re  the designations of 

the given t o t a l  states. 

ve r t i ce s  of the subcube. 

The t o t a l  s t a t e s  x and y are diagonally opposite 

Eichelberger (3) has defined a Boolean function as having a subcube 

of sets of argument values such that the function values agree on a pair 

of diagonally opposite ve r t i ce s  and are not ident ica l  on a l l  sets of 

argument values i n  the subcube. 

Eichelberger has shown f o r  Boolean functions having function hazards 

that no mechanization can insure the absence of undesireable output 

t r ans i en t s  f o r  a rb i t r a ry  input changes regardless of s t r ay  log ic  delays. 

W i t h  these def in i t ions  the  argument proceeds as  follows. 

Since there is a c r i t i c a l  input race it must be t rue that  a .  # b 
J j’ 

a # d f o r  some j # k. There are  then two pqss ib i l i t i e s  f o r  c . 
k k j 

If  c .  = a .  then c # b .  and the jth Boolean function has a function 
J J j J  

hazard on the (aNO1,  cN10) subcube as shown i n  Figure 1-2 since the value 

a is  assumed on the t o t a l  s t a t e s  aNOl and cNlO w h i l e  the value a is  

assumed on aNOO. 
j j 

An exactly analogous argument demonstrates the existence of a func- 

by considering the values f o r  the kth function on k = ak t i o n  hazard i f  e 

the subcube 

(aNO1, cN10) 

Therefore i f  a function hazard is not t o  e x i s t  we must have 

ak ’ ek ak ’ dk 
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A nunber of cases w i l l  now be considered which a re  eas i ly  followed 

i f  the constraints above are  described i n  the form of Figure 1-3. 

Case (1) 

hazard e x i s t s  on the (aNO1, aKl.0) 

a n -  t h i s  subcube by the j 

kth function on t h i s  subcube while the values on the diagonally opposite 

t o t a l  states a r e  a = f .  and a = f respectively. 

Case (2) If c = a then since the value a i s  assumed on (aNOl, cN10) 

a function hazard exis ts .  

If a = f .  or a = f then since a f b .  and a # dk, a function 
J k j J  k k  

subcube since the value b is  assumed 
j 

;h f u c t i o n  and the value d i s  assumed by the  k 

j J  k k  

k k  k 

Case (3) If e = a then since the value 2 i s  assumed on the subcube 

(a N01, 
j j’ j 

eN10) a function hazard exis ts .  

Case (4)  If d .  = a .  the? since the value a is assumed on the (aNOO, &l> 
J J j 

subcube, a function hazard ex is t s .  

Case ( 5 )  If b = ak then since the value a 
k k is assumed on the (dI00, &l) 

subellbe a function hazard exis ts .  

No reference i s  made t o  the ith posit ion i n  these arguments. 

Case (6) If ci = a and it is  not t rue  t h a t  a = b .  = d.  = f .  a fun 
i i 1 1 1 

ti n 

hazard ex i s t s  on t h e  ( d01, 

di, f .  a r e  assumed there. 

Case (7)  Similarly if c = a a function hazard ex i s t s  on the (mol, cNl0) 
subcube unless a 

cN10) subcube since a l l  the values ai, bi7 

1 - 
i i 

= b.  = d.  = fi. 
i 1 1 
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The only poss ib i l i t i e s  remaining i f  no function hazard is t o  ex i s t  

are 

some i 

case (1) a # fj’ ak # f k  j 

‘k ’ ak 
case (2) 

case ( 3 )  e j  # a j  

case (4)  d j  f a j  
case ( 5 )  bk # ‘k 

case (6) and (7) a = bi = d .  = f 
i 1 i 

It i s  eas i ly  ver i f ied  t h a t  these conditions require i # j, k, and 

that t h i s  assumption has not been previously required. 

The value of the ithy jth and kth functions i n  the positions relevant 

t o  the c r i t i c a l  input race can now all be wr i t ten  i n  terms of the values 

of ai, a jy  ak and c 

If c .  = a .  then the  d and c rows must not be included i n  the (aN01, fNl0) 

a s  shown i n  Figure 1-4. 
i 

1 1 

i f  no function hazard is t o  ex i s t  since otherwise the function value 

would occur on t h i s  subcube. 

i 

It follows tha t  the a, b, cy f rows must be coded 

k a = . . . a  ... a ... a 
i j 

k d = ... a ... a ... a 
i j 
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With no fur ther  constraint  on the secondary assignment, the d row might 

be included i n  the (aNO1, fNl0) subcube. 

function hazard, if there  is t o  be no function hazard there must be an 

in teger  1 f i, j, k such that 

Since th i s  would lead t o  a 

- - 
1 -.* k * * -  a f = ... a ... a ... a 

i 3 
eliminating the d row from the  (aNO1, fNl0) subcube. 

results i n  a function hazard on the (aNO1, aNl0) subcube since the 1 t h  

However, t h i s  coding 

function has values a 

value d 

= f 
1 1  

on diagonally opposite t o t a l  s t a t e s  and the 
- 

= al on the subcube. 1 - 
Similarly, i f  c = a then the b and c rows must be included i n  the 

i i 

(aNOL, flKL0) subcube if a functional hazard is not t o  exis t .  Then the 

a, b, c, f rows m u s t  be coded 

k * * *  

k 

a = ... a ... a ... a 

b = . . .  a ... a ... a 
i j 

i j 

- 

- - - 
k e = . . .  a ... a ... a 

i j 

If the b row is  i n  the subcube a function hazard would be present. 

Hence i f  no function hazard is t o  ex is t  there  must be an integer m f i, j, k 

such t h a t  the a, b, f rows are coded 

a = ... a ... a ... a ... a ... 
i j k m 
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However, t h i s  coding r e su l t s  i n  a function hazard on the (aNO1, aN10) 

subcube since the mth function has the value a 

t o t a l  s t a t e s  and b = a 

= f on diagonally opposite m I2 - 
on the  t o t a l  s t a t e  (aNOO).  m m 

The c r i t i c a l  input race of Figure 1-1 has the  maximum number of 

t rans ien t  states assuming d i rec t  t ransi t ions from stable  s t a t e s  t o  s table  

states. S t r i c t l y  speaking other cases involving fewer t ransient  s t a t e s  

should be considered. These arguments w i l l  be l e f t  t o  the reader since 

they a re  much simpler than the one given here and involve the same 

techniques . 
Proof of Theorem I1 

Since it is assumed t h a t  the flow table  contains a c r i t i c a l  race, 

there  must be a sub-table of the form of Figure 1-5 or of a form which 

can be derived from the form of Figure 1-5 by s t a t e  ident i f icat ion.  

However, s cannot be ident i f ied w i t h  s or s. w i t h  s i f  a c r i t i c a l  

input race is  t o  ex is t .  

The following notation w i l l  be used 

2 5 1 4 

Td : Length of i n e r t i a l  delay i n  the feedback l i n e s  

T : Time between the change of input I and the change of 
S 1 

input 12. 

the sequence of input changes is  NOl+Nll+Nl.O since 

It is  assumed without loss of generali ty that  

the argument f o r  the sequence N O l ~ N O O - - r N l O  is identical .  

ab 
Tc(si-s.) : The time required f o r  the combinational logic  t o  compute 

J 
the in te rna l  s t a t e  s a f t e r  a change i n  input occurs when 

the sequential  machine is  i n  the in te rna l  s t a t e  s which 

r e su l t s  i n  the input state ab. 

j 

i 

We w i l l  first distinguish three cases. 
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11 
S 

I ( c l a s s i c a l )  T (so-sl) + Td 4 T 
C 

I1 (ambiguous ) 

111 (simultaneous) 

Case I; When I changes i n  the s table  s t a t e  s the c i r c u i t  w i l l  compute 
1 0 

s which w i l l  a r r ive  a t  t h e  outputs of the i n e r t i a l  delays a f t e r  1 
an in t e rva l  of t i m e  T + T (so- 11 sl). Since s is  s tab le  

d c  1 

with input 11 no fu r the r  change w i l l  occur u n t i l  I 

a t  which t i m e  the  c i r cu i t  w i l l  compute the  s tab le  s t a t e  s 

This i s  the  c l a s s i ca l  case of input change separation suffi- 

c ien t ly  large t o  allow s tab i l iza t ion  a f t e r  each input change. 

changes, 2 

2’ 

Case 111: 

Case 11: 

When I changes the  combinational log ic  w i l l  compute s a f t e r  
1 1 

Tc (so- 11 sl)- However, I changes when the output of the 
2 

i n e r t i a l  delays is  s t i l l  s . 
then compute s 

The combinational logic  w i l l  
0 

which w i l l  reach the  inputs t o  the i n e r t i a l  3 
+ Tc (s  c_+ I U  s ) a f t e r  the first input change. 

3 delays a t  T 

The difference i n  t i m e  of arrival a t  the i n e r t i a l  delays i s  

S 0 

10 s 1 - Tc (So-> s . )  which i s  less than the Ts + Tc (so--+ 3 
i n e r t i a l  delay so 

so’s3* If the 
the inequality of 

by the sequential  

t h a t  the delay outputs w i l l  change from 

input changes are close enough t o  s a t i s f y  

case I11 they a re  regarded as simultaneous 

c i r cu i t  . 
I n  case I1 the r e su l t  o f t h e  changes i s  ambiguous and depends 

upon the r e l a t ive  s i z e  of T and S 
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v e r i f i e d  that the s t a t e  s l w i l l  ge t  through the i n e r t i a l  delays a f t e r  

the  change i n  I2 if  and only i f  t he  inequal i t ies  of Case I1 are  valid.  

I n  Case I s1 gets  through the delays before I2 changes and i n  Case III 

s does not ge t  through the delays. I n  the state s1 with input 10 1 
the state s2 i s  computed and ar r ives  a t  the i n e r t i a l  delays a t  

However, a t  the t i m e  of the second input change the outputs of the 

delay held so and t h e  c i r c u i t  computed s which arr ived a t  the delay 3 
inputs a t  

If 

w i l l  not p s s  through the i n e r t i a l  delays and the c i r c u i t  w i l l  
s3 
become s t ab le  i n  s But t h i s  is  precisely the inequality (1) which 2’ 

was assumed. 

On the  other  hand, i f  the  inequality (2)  is t rue  

10 10 
(sl --+ s 2 )  - T ( s  _f s ) then both c o  3 (2)  Ts<  Tc (so-%s i + Tc 

3 and s w i l l  pass through the i n e r t i a l  delays and since both s s3 2 
and s are stable the en t i f e  process w i l l  be repeated indef in i te ly  

if the t i m e  required t o  es tab l i sh  each of t he  stable states a t  the 

2 

output of the  combinational logic when that log ic  has computed the 

other  exceeds the  magnitude of the i n e r t i a l  delay. If the maximum 

logic  delay is  Tmax then t h i s  w i l l  not occur i f  T >Tmax. d 

v e r i f i e d  that if t h i s  condition holds even the  f i rs t  osc i l l a t ion  

It i s  readi ly  
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w i l l  not occur since if 

T ( s  - -3Sl)  11 + Tc(S1--+ 1 0  s2) - Tc (.so+ 10 s 3 )  c o  
Td + T~ ( s o d  11 sl) - Tc (so-+s3j 10 

the inequality (2)  cannot be sa t i s f i ed  i n  case I1 which i s  equivalent t o  

Td > Tc (‘1-)‘2) 10 

and is  insured by Td> TmaX. 

It should be noted tha t  the argument only requires t h a t  any 

be d i s t inc t  which i s  a s l igh t ly  weaker s3’ s5 
two of the s t a t e s  s2, 

condition than the existence of  a c r i t i c a l  input race. However, 

normally s 

c r i t i c a l  input race is required. 

w i l l  be ident ical  t o  e i the r  s 2 or S5’ i n  which case a 3 
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